We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To create a clinical tool based on institution-specific risk factors to estimate the probability of carbapenem resistance among Pseudomonas aeruginosa isolates obtained from infected patients. By better estimating the probability of carbapenem resistance on the basis of patient-specific factors, clinicians can refine their empirical therapy for P. aeruginosa infections and potentially maximize clinical outcomes by increasing the likelihood of appropriate empirical antimicrobial therapy.
Design.
A retrospective, cross-sectional study.
Setting.
Tertiary care academic hospital.
Patients.
All adult inpatients who had a respiratory tract infection due to P. aeruginosa between January 2001 and June 2005.
Intervention.
Data on demographic characteristics, antibiotic history, and microbiology were collected. Log-binomial regression was employed to identify predictors of carbapenem resistance among P. aeruginosa isolates and to devise the clinical prediction tool.
Results.
Among 351 patients with P. aeruginosa infection, 44% were infected with carbapenem-resistant P. aeruginosa strains. Independent predictors of carbapenem resistance were prior receipt of mechanical ventilation for 11 days or more, prior exposure to fluoroquinolones for 3 days or more, and prior exposure to carbapenems for 3 days or more.
Conclusions.
With carbapenem resistance rates among P. aeruginosa isolates on the rise at our institution, the challenge was to identify patients for whom carbapenems would remain an effective empirical agent, as well as the patients at greatest risk for infection with carbapenem-resistant strains. The clinical prediction tool accurately estimated carbapenem resistance among this risk-stratified cross-sectional study of patients with P. aeruginosa infection. This tool may be an effective way for clinicians to refine their selection of empirical antibiotic therapy and to maximize clinical outcomes by increasing the likelihood of appropriate antibiotic treatment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.