We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This manuscript details the strategy employed for categorising food items based on their processing levels into the four NOVA groups. Semi-quantitative food frequency questionnaires (FFQs) from the Nurses’ Health Studies (NHS) I and II, the Health Professionals Follow-up Study (HPFS) and the Growing Up Today Studies (GUTS) I and II cohorts were used. The four-stage approach included: (i) the creation of a complete food list from the FFQs; (ii) assignment of food items to a NOVA group by three researchers; (iii) checking for consensus in categorisation and shortlisting discordant food items; (iv) discussions with experts and use of additional resources (research dieticians, cohort-specific documents, online grocery store scans) to guide the final categorisation of the short-listed items. At stage 1, 205 and 315 food items were compiled from the NHS and HPFS, and the GUTS FFQs, respectively. Over 70 % of food items from all cohorts were assigned to a NOVA group after stage 2. The remainder were shortlisted for further discussion (stage 3). After two rounds of reviews at stage 4, 95⋅6 % of food items (NHS + HPFS) and 90⋅7 % items (GUTS) were categorised. The remaining products were assigned to a non-ultra-processed food group (primary categorisation) and flagged for sensitivity analyses at which point they would be categorised as ultra-processed. Of all items in the food lists, 36⋅1 % in the NHS and HPFS cohorts and 43⋅5 % in the GUTS cohorts were identified as ultra-processed. Future work is needed to validate this approach. Documentation and discussions of alternative approaches for categorisation are encouraged.
The newly discovered Bibole banded iron formations are located within the Nyong Group at the northwest of the Congo Craton in Cameroon. The Bibole banded iron formations comprise oxide (quartz-magnetite) and mixed oxide-silicate (chlorite-magnetite) facies banded iron formations, which are interbedded with felsic gneiss, phyllite and quartz-chlorite schist. Geochemical studies of the quartz-magnetite banded iron formations and chlorite-magnetite banded iron formations reveal that they are composed of >95 wt % Fe2O3 plus SiO2 and have low concentrations of Al2O3, TiO2 and high field strength elements. This indicates that the Bibole banded iron formations were not significantly contaminated by detrital materials. Post-Archaean Australian Shale–normalized rare earth element and yttrium patterns are characterized by positive La and Y anomalies, a relative depletion of light rare earth elements compared to heavy rare earth elements and positive Eu anomalies (average of 1.86 and 1.15 for the quartz-magnetite banded iron formations and chlorite-magnetite banded iron formations, respectively), suggesting the influence of low-temperature hydrothermal fluids and seawater. The quartz-magnetite banded iron formations display true negative Ce anomalies, while the chlorite-magnetite banded iron formations lack Ce anomalies. Combined with their distinct Eu anomalies consistent with Algoma- and Superior-type banded iron formations, we suggest that the Bibole banded iron formations were deposited under oxic to suboxic conditions in an extensional basin. SIMS U–Pb data indicate that the Bibole banded iron formations were deposited at 2466 Ma and experienced metamorphism and metasomatism at 2078 Ma during the Eburnean/Trans-Amazonian orogeny. Overall, these findings suggest that the studied banded iron formations probably marked the onset of the rise of atmospheric oxygen, also known as the Great Oxidation Event in the Congo Craton.
This article examines how the encounter between China and international law is narrated in the English-speaking and Chinese literature and sheds light on the politics thereof. It particularly shows that the English-speaking and Chinese-speaking literature diverge as to the order of meaning in which the encounter between China and international law is registered. It demonstrates that the divergences between these bodies of literature are everything but innocent.
This paper provides an up-to-date review of the problems related to the generation, detection and mitigation of strong electromagnetic pulses created in the interaction of high-power, high-energy laser pulses with different types of solid targets. It includes new experimental data obtained independently at several international laboratories. The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce. The major emphasis is put on the GHz frequency domain, which is the most damaging for electronics and may have important applications. The physics of electromagnetic emissions in other spectral domains, in particular THz and MHz, is also discussed. The theoretical models and numerical simulations are compared with the results of experimental measurements, with special attention to the methodology of measurements and complementary diagnostics. Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions, which may have promising applications.
For the Choquard equation, which is a nonlocal nonlinear Schrödinger type equation,
$$-\Delta u+V_{\mu, \nu} u=(I_\alpha\ast \vert u \vert ^{({N+\alpha})/{N}}){ \vert u \vert }^{{\alpha}/{N}-1}u,\quad {\rm in} \ {\open R}^N, $$
where $N\ges 3$, Vμ,ν :ℝN → ℝ is an external potential defined for μ, ν > 0 and x ∈ ℝN by Vμ,ν(x) = 1 − μ/(ν2 + |x|2) and $I_\alpha : {\open R}^N \to 0$ is the Riesz potential for α ∈ (0, N), we exhibit two thresholds μν, μν > 0 such that the equation admits a positive ground state solution if and only if μν < μ < μν and no ground state solution exists for μ < μν. Moreover, if μ > max{μν, N2(N − 2)/4(N + 1)}, then equation still admits a sign changing ground state solution provided $N \ges 4$ or in dimension N = 3 if in addition 3/2 < α < 3 and $\ker (-\Delta + V_{\mu ,\nu }) = \{ 0\} $, namely in the non-resonant case.
Based on the data from the Next Generation Virgo cluster Survey (NGVS), we statistically study the photometric properties of globular clusters (GCs), ultra-compact dwarfs (UCDs) and dwarf nuclei in the Virgo core (M87) region. We found an obvious negative color (g - z) gradient in GC system associate with M87, i.e. GCs in the outer regions are bluer. However, such color gradient does not exist in UCD system, neither in dwarf nuclei system around M87. In addition, we found that many UCDs are surrounded by extended, low surface brightness envelopes. The dwarf nuclei and UCDs show different spatial distributions from GCs, with dwarf nuclei and UCDs (especially for the UCDs with visible envelopes) lying at larger distances to the Virgo center. These results support the view that UCDs (at least for a fraction of UCDs) are more tied to dwarf nuclei than to GCs.
Across the globe, the implementation of quality improvement science and collaborative learning has positively affected the care and outcomes for children born with CHD. These efforts have advanced the collective expertise and performance of inter-professional healthcare teams. In this review, we highlight selected quality improvement initiatives and strategies impacting the field of cardiovascular care and describe implications for future practice and research. The continued leveraging of technology, commitment to data transparency, focus on team-based practice, and recognition of cultural norms and preferences ensure the success of sustainable models of global collaboration.
The CMP challenges for advanced technology nodes are discussed. Global and local uniformity challenges and their cumulative effects are presented. Uniformity improvements for advanced node integration were achieved through slurry, pad and platen optimization, innovative integration schemes, the reduction of incoming variation and the reduction of cumulative effects. We discuss reduction of typical CMP defect types. Defects resulting from simple mechanisms (foreign material, polish residues) and those resulting from chemical and physical interactions (corrosion, chemical attack, scratches, physical migration) and strategies for control are studied. Defectivity reduction measures include new post-CMP clean chemicals, new slurries and pads and reduction of incoming defectivity. Finally we discuss an observed tradeoff between good defectivity and good uniformity.
The purpose of this paper is to provide a large class of initial data which generates global smooth solution of the 3D inhomogeneous incompressible Navier–Stokes system in the whole space $\mathbb{R}^{3}$. This class of data is based on functions which vary slowly in one direction. The idea is that 2D inhomogeneous Navier–Stokes system with large data is globally well-posed and we construct the 3D approximate solutions by the 2D solutions with a parameter. One of the key point of this study is the investigation of the time decay properties of the solutions to the 2D inhomogeneous Navier–Stokes system. We obtained the same optimal decay estimates as the solutions of 2D homogeneous Navier–Stokes system.
Bipolar disorder is a highly heritable polygenic disorder. Recent
enrichment analyses suggest that there may be true risk variants for
bipolar disorder in the expression quantitative trait loci (eQTL) in the
brain.
Aims
We sought to assess the impact of eQTL variants on bipolar disorder risk
by combining data from both bipolar disorder genome-wide association
studies (GWAS) and brain eQTL.
Method
To detect single nucleotide polymorphisms (SNPs) that influence
expression levels of genes associated with bipolar disorder, we jointly
analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls)
and a genome-wide brain (cortical) eQTL (193 healthy controls) using a
Bayesian statistical method, with independent follow-up replications. The
identified risk SNP was then further tested for association with
hippocampal volume (n = 5775) and cognitive performance
(n = 342) among healthy individuals.
Results
Integrative analysis revealed a significant association between a brain
eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes
factor = 5.48; bipolar disorder P =
5.85×10–5). Follow-up studies across multiple independent
samples confirmed the association of the risk SNP (rs6088662) with gene
expression and bipolar disorder susceptibility (P =
3.54×10–8). Further exploratory analysis revealed that
rs6088662 is also associated with hippocampal volume and cognitive
performance in healthy individuals.
Conclusions
Our findings suggest that 20q11.22 is likely a risk region for bipolar
disorder; they also highlight the informative value of integrating
functional annotation of genetic variants for gene expression in
advancing our understanding of the biological basis underlying complex
disorders, such as bipolar disorder.
Gd2TixZr2−xO7 (x = 0 to 2) pyrochlore was irradiated by 30 MeV C60 clusters, which provide an extremely high ionizing energy density. High-resolution transmission electron microscopy revealed a complex ion-track structure in Gd2Ti2O7 and Gd2TiZrO7, consisting of an amorphous core and a shell of a disordered, defect-fluorite structure. As compared with the irradiation by 1.5 GeV U ions with the highest energy loss, the track structure is consistent with tracks created by monoatomic swift heavy ions, but the diameters (with the entire diameter of 17 nm for Gd2Ti2O7 and 15 nm for Gd2TiZrO7) are significantly larger due to the much smaller velocity and higher energy density of the C60 ions. Ion tracks created by monoatomic ions are challenging to describe by HRTEM, as the boundary between disordered fluorite and pyrochlore matrix is less distinct. However, the C60 irradiation shows a clearly resolved ion track with completely crystalline, disordered, defect-fluorite structure around an amorphous core. Based on the distinct boundaries of the track morphology, inelastic thermal-spike calculations were used to describe the track size and extract critical energy densities for the interpretation of the complex core–shell morphologies for the different pyrochlore compositions.
We use Toeplitz operators to evaluate the leading term in the asymptotics of the analytic torsion forms associated with a family of flat vector bundles $F_{p}$. For $p\in \mathbf{N}$, the flat vector bundle $F_{p}$ is the direct image of $L^{p}$, where $L$ is a holomorphic positive line bundle on the fibres of a flat fibration by compact Kähler manifolds. The leading term of the analytic torsion forms is the integral along the fibre of a locally defined differential form.
It has been shown in previous studies that a miscibility gap exists in the hypo-stoichiometric region UO2-PuO2-Pu2O3 with one phase poor in oxygen, and the other with an O/M (Oxygen to Metal ratio) close to 2.00. Data on the evolution of this region in temperature, especially in the vicinity of the oxygen content corresponding to the highest temperature at which the gap can be observed, is scarce. A high temperature X-ray diffractometer with a dedicated gas control setup was used to study the described region in-situ. We have observed reflections of the two cubic phases, with one increasing and the other decreasing in intensity during the thermal plateaus lasting up to 20 h. We compare the calculated lattice parameters with literature. We estimated the O/M evolution of our samples from a comparison of phase fractions values obtained by Rietveld refinement and calculations using the Calphad method.
Discovery of ultra-compact dwarfs (UCDs) in the past 15 years blurs the once thought clear division between classic globular clusters (GCs) and early-type galaxies. The intermediate nature of UCDs, which are larger and more massive than typical GCs but more compact than typical dwarf galaxies, has triggered hot debate on whether UCDs should be considered galactic in origin or merely the most extreme GCs. Previous studies of various scaling relations, stellar populations and internal dynamics did not give an unambiguous answer to the primary origin of UCDs. In this contribution, we present the first ever detailed study of global dynamics of 97 UCDs (rh ≳ 10 pc) associated with the central cD galaxy of the Virgo cluster, M87. We found that UCDs follow a different radial number density profile and different rotational properties from GCs. The orbital anisotropies of UCDs are tangentially-biased within ~ 40 kpc of M87 and become radially-biased with radius further out. In contrast, the blue GCs, which have similar median colors to our sample of UCDs, become more tangentially-biased at larger radii beyond ~ 40 kpc. Our analysis suggests that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially-biased orbital structure of UCDs at large radii is in general agreement with the scenario that most UCDs originated from the tidally threshed dwarf galaxies.
Literature data of the Mn-Si system is analyzed and discordances are pointed out. First principles calculations are performed to clarify the enthalpies of formation of the intermetallic phases. Especially the enthalpies of formation of the various possible structures of the MnSix are discussed. On the basis of these new data, a thermodynamic description of the Gibbs energy of the phases is performed using the Calphad method. The system Ge-Mn is also assessed using the Calphad method for the first time.
The mixing enthalpy in the D88 solid solution is calculated between Mn5Ge3 and Mn5Si3 by DFT calculations.
Finally a thermodynamic description of the ternary system is suggested. Especially the solubility of germanium in MnSix is modeled.
The germanium-manganese system has been experimentally studied but no Calphad description is available yet. After a critical review of the literature concerning the phase diagram and the thermodynamic properties, a thermodynamic description of the Gibbs energy of the phases is performed using the Calphad method. The liquid phase is described with an associated model and the variation to the stoichiometry of the solid phases is taken into account.
The Dominion Radio Astrophysical Observatory (DRAO) is carrying out a survey as part of an international collaboration to image the northe, at a common resolution, in emission from all major constituents of the interstellar medium; the neutral atomic gas, the molecular gas, the ionised gas, dust and relativistic plasma. For many of these constituents the angular resolution of the images (1 arcmin) will be more than a factor of 10 better than any previous studies. The aim is to produce a publicly-available database of high resolution, high-dynamic range images of the Galaxy for multi-phase studies of the physical states and processes in the interstellar medium. We will sketch the main scientific motivations as well as describe some preliminary results from the Canadian Galactic Plane Survey/Releve Canadien du Plan Galactique (CGPS/RCPG).