We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Poor post-prandial glucose control is a risk factor for multiple health conditions. The second-meal effect refers to the progressively improved glycaemic control with repeated feedings, an effect which is achievable with protein ingestion at the initial eating occasion. The most pronounced glycaemic response each day therefore typically occurs following breakfast, so the present study investigated whether ingesting protein during the night could improve glucose control at the first meal of the day. In a randomised crossover design, fifteen adults (seven males, eight females; age, 22 (sd 3) years; BMI, 24·0 (sd 2·8) kg/m2; fasting blood glucose, 4·9 (sd 0·5) mmol/l) woke at 04.00 (sd 1) hours to ingest 300 ml water with or without 63 g whey protein. Participants then completed a mixed-macronutrient meal tolerance test (1 g carbohydrate/kg body mass, 2356 (sd 435) kJ), 5 h 39 min following the nocturnal feeding. Nocturnal protein ingestion increased the glycaemic response (incremental AUC) to breakfast by 43·5 (sd 55·5) mmol × 120 min/l (P = 0·009, d = 0·94). Consistent with this effect, individual peak blood glucose concentrations were 0·6 (sd 1·0) mmol/l higher following breakfast when protein had been ingested (P = 0·049, d = 0·50). Immediately prior to breakfast, rates of lipid oxidation were 0·02 (sd 0·03) g/min higher (P = 0·045) in the protein condition, followed by an elevated post-prandial energy expenditure (0·38 (sd 0·50) kJ/min, P = 0·018). Post-prandial appetite and energy intake were similar between conditions. The present study reveals a paradoxical second-meal phenomenon whereby nocturnal whey protein feeding impaired subsequent glucose tolerance, whilst increasing post-prandial energy expenditure.
Household surveys are one of the most commonly used tools for generating insight into rural communities. Despite their prevalence, few studies comprehensively evaluate the quality of data derived from farm household surveys. We critically evaluated a series of standard reported values and indicators that are captured in multiple farm household surveys, and then quantified their credibility, consistency and, thus, their reliability. Surprisingly, even variables which might be considered ‘easy to estimate’ had instances of non-credible observations. In addition, measurements of maize yields and land owned were found to be less reliable than other stationary variables. This lack of reliability has implications for monitoring food security status, poverty status and the land productivity of households. Despite this rather bleak picture, our analysis also shows that if the same farm households are followed over time, the sample sizes needed to detect substantial changes are in the order of hundreds of surveys, and not in the thousands. Our research highlights the value of targeted and systematised household surveys and the importance of ongoing efforts to improve data quality. Improvements must be based on the foundations of robust survey design, transparency of experimental design and effective training. The quality and usability of such data can be further enhanced by improving coordination between agencies, incorporating mixed modes of data collection and continuing systematic validation programmes.
A robust biomedical informatics infrastructure is essential for academic health centers engaged in translational research. There are no templates for what such an infrastructure encompasses or how it is funded. An informatics workgroup within the Clinical and Translational Science Awards network conducted an analysis to identify the scope, governance, and funding of this infrastructure. After we identified the essential components of an informatics infrastructure, we surveyed informatics leaders at network institutions about the governance and sustainability of the different components. Results from 42 survey respondents showed significant variations in governance and sustainability; however, some trends also emerged. Core informatics components such as electronic data capture systems, electronic health records data repositories, and related tools had mixed models of funding including, fee-for-service, extramural grants, and institutional support. Several key components such as regulatory systems (e.g., electronic Institutional Review Board [IRB] systems, grants, and contracts), security systems, data warehouses, and clinical trials management systems were overwhelmingly supported as institutional infrastructure. The findings highlighted in this report are worth noting for academic health centers and funding agencies involved in planning current and future informatics infrastructure, which provides the foundation for a robust, data-driven clinical and translational research program.
The role that vitamin D plays in pulmonary function remains uncertain. Epidemiological studies reported mixed findings for serum 25-hydroxyvitamin D (25(OH)D)–pulmonary function association. We conducted the largest cross-sectional meta-analysis of the 25(OH)D–pulmonary function association to date, based on nine European ancestry (EA) cohorts (n 22 838) and five African ancestry (AA) cohorts (n 4290) in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Data were analysed using linear models by cohort and ancestry. Effect modification by smoking status (current/former/never) was tested. Results were combined using fixed-effects meta-analysis. Mean serum 25(OH)D was 68 (sd 29) nmol/l for EA and 49 (sd 21) nmol/l for AA. For each 1 nmol/l higher 25(OH)D, forced expiratory volume in the 1st second (FEV1) was higher by 1·1 ml in EA (95 % CI 0·9, 1·3; P<0·0001) and 1·8 ml (95 % CI 1·1, 2·5; P<0·0001) in AA (Prace difference=0·06), and forced vital capacity (FVC) was higher by 1·3 ml in EA (95 % CI 1·0, 1·6; P<0·0001) and 1·5 ml (95 % CI 0·8, 2·3; P=0·0001) in AA (Prace difference=0·56). Among EA, the 25(OH)D–FVC association was stronger in smokers: per 1 nmol/l higher 25(OH)D, FVC was higher by 1·7 ml (95 % CI 1·1, 2·3) for current smokers and 1·7 ml (95 % CI 1·2, 2·1) for former smokers, compared with 0·8 ml (95 % CI 0·4, 1·2) for never smokers. In summary, the 25(OH)D associations with FEV1 and FVC were positive in both ancestries. In EA, a stronger association was observed for smokers compared with never smokers, which supports the importance of vitamin D in vulnerable populations.
To outline the development of a smartphone-based tool to collect thrice-repeated 24 h dietary recall data in rural Nepal, and to describe energy intakes, common errors and researchers’ experiences using the tool.
Design
We designed a novel tool to collect multi-pass 24 h dietary recalls in rural Nepal by combining the use of a CommCare questionnaire on smartphones, a paper form, a QR (quick response)-coded list of foods and a photographic atlas of portion sizes. Twenty interviewers collected dietary data on three non-consecutive days per respondent, with three respondents per household. Intakes were converted into nutrients using databases on nutritional composition of foods, recipes and portion sizes.
Setting
Dhanusha and Mahottari districts, Nepal.
Subjects
Pregnant women, their mothers-in-law and male household heads. Energy intakes assessed in 150 households; data corrections and our experiences reported from 805 households and 6765 individual recalls.
Results
Dietary intake estimates gave plausible values, with male household heads appearing to have higher energy intakes (median (25th–75th centile): 12 079 (9293–14 108) kJ/d) than female members (8979 (7234–11 042) kJ/d for pregnant women). Manual editing of data was required when interviewers mistook portions for food codes and for coding items not on the food list. Smartphones enabled quick monitoring of data and interviewer performance, but we initially faced technical challenges with CommCare forms crashing.
Conclusions
With sufficient time dedicated to development and pre-testing, this novel smartphone-based tool provides a useful method to collect data. Future work is needed to further validate this tool and adapt it for other contexts.
This report uses 6-year outcomes of the Oregon Divorce Study to examine the processes by which parenting practices affect deviant peer association during two developmental stages: early to middle childhood and late childhood to early adolescence. The participants were 238 newly divorced mothers and their 5- to 8-year-old sons who were randomly assigned to Parent Management Training—Oregon Model (PMTO®) or to a no-treatment control group. Parenting practices, child delinquent behavior, and deviant peer association were repeatedly assessed from baseline to 6 years after baseline using multiple methods and informants. PMTO had a beneficial effect on parenting practices relative to the control group. Two stage models linking changes in parenting generated by PMTO to children's growth in deviant peer association were supported. During the early to middle childhood stage, the relationship of improved parenting practices on deviant peer association was moderated by family socioeconomic status (SES); effective parenting was particularly important in mitigating deviant peer association for lower SES families whose children experience higher densities of deviant peers in schools and neighborhoods. During late childhood and early adolescence, the relationship of improved parenting to youths' growth in deviant peer association was mediated by reductions in the growth of delinquency during childhood; higher levels of early delinquency are likely to promote deviant peer association through processes of selective affiliation and reciprocal deviancy training. The results are discussed in terms of multilevel developmental progressions of diminished parenting, child involvement in deviancy producing processes in peer groups, and increased variety and severity of antisocial behavior, all exacerbated by ecological risks associated with low family SES.
Age-related macular degeneration (AMD) is one of the leading causes of
blindness in the developed world, with an incidence of 1:500 in patients
aged 55–64, and 1:8 in patients over 85 [1]. Retinitis pigmentosa
(RP) is an inherited disease blinding about 1 in every 4000 individuals much
earlier in life [2]. In both of these conditions the photoreceptor layer
degenerates, while the inner retinal neurons survive to a large extent
[3–5]. Electrically activating these neurons provides an alternative
route for visual information and raises hope for the restoration of sight to
the blind.
In a normal retina, photoreceptors convert light into neural signals that are
processed by inner retinal neurons, leading to generation of action
potentials in the retinal ganglion cells (RGCs). These signals travel to the
brain through the optic nerve and serve as the basis for visual perception.
Electrical stimulation of the retina with microelectrodes can also produce
action potentials in RGCs, creating spatially patterned percepts of light
called phosphenes. Indeed, recent clinical trials with retinal prosthetic
electrode arrays have restored visual acuity to subjects blinded by retinal
degeneration up to 20/1200 using epiretinal placement (facing the
ganglion cell side) [6], and up to 20/550 with subretinal
implantation [7]. While this serves as an important proof of concept with
clinically useful implications, existing retinal prosthesis designs have a
number of shortcomings.
Here, we report reproducible and accurate measurement of crystallographic parameters using scanning transmission electron microscopy. This is made possible by removing drift and residual scan distortion. We demonstrate real-space lattice parameter measurements with <0.1% error for complex-layered chalcogenides Bi2Te3, Bi2Se3, and a Bi2Te2.7Se0.3 nanostructured alloy. Pairing the technique with atomic resolution spectroscopy, we connect local structure with chemistry and bonding. Combining these results with density functional theory, we show that the incorporation of Se into Bi2Te3 causes charge redistribution that anomalously increases the van der Waals gap between building blocks of the layered structure. The results show that atomic resolution imaging with electrons can accurately and robustly quantify crystallography at the nanoscale.
There are many biological macro-molecules such as nucleic acids, lipids, carbohydrates and proteins. While each of them plays a vital (and interesting) part in life but there is something special about the proteins. Proteins are the key link between the processes of information and replication that take place on a genetic level and the infrastructure of living features. Understanding the properties of proteins is the key to understanding the spark of the life. In this paper we describe our study of various electrical properties of protein when performing measurements at the nanoscale. To achieve this goal we designed and fabricated a nanoelectronic probe. This nano structure consists of four thin film layers. There are two conductive layers and an insulative layer in between. There is also a protective oxide layer as the top most layer. This layer is to prevent the exposure of conductive electrodes to the solution. Underneath the bottom electrode, there is another oxide layer, which can be a thermally grown oxide. This layer insulates the first electrode from the substrate. In this study, while we use non-specific detection of streptavidin protein as a proof of concept, we emphasize that the findings of this study can be extended to specific detection of target proteins, where in this case a specific probe molecule would also be immobilized on the sensor surface.
Here we present the development of an array of electrical nano-biosensors in a microfluidic channel, called Nanoneedle biosensors. Then we present the proof of concept study for protein detection. A Nanoneedle biosensor is a real-time, label-free, direct electrical detection platform, which is capable of high sensitivity detection, measuring the change in ionic current and impedance modulation, due to the presence or reaction of biomolecules such as proteins or nucleic acids. We show that the sensors which have been fabricated and characterized for the protein detection. We have functionalized Nanoneedle biosensors with receptors specific to a target protein using physical adsorption for immobilization. We have used biotinylated bovine serum albumin as the receptor and sterptavidin as the target analyte. The detection of streptavidin binding to the receptor protein is also presented.