Properties of copper films produced using atomic layer deposition (ALD) were characterized. Composition, morphology, and electrical properties of these films grown on glass, as well as Ta, TiN, and TaN on silicon wafers were examined. The resistivity of films thicker than about 60 nm was near bulk value. Films were deposited using a two-step ALD process in which copper(II)-1,1,1,5,5,5,-hexafluoroacetylacetonate hydrate and water vapor were introduced in the first step and a reducing agent was introduced in a subsequent step. Five reducing agents were evaluated, with the best results obtained using isopropanol or formalin. The optimum deposition temperature with isopropanol was about 260 °C, whereas it was about 300 °C with formalin. These films were also investigated as seed layers for electrodeposition of thicker Cu layers for possible interconnect applications. Excellent fills in high aspect ratio trenches were demonstrated.