The flow of an impinging non-Newtonian jet onto a solid flat plate is examined theoretically in this study. Similarity solutions are sought for both shear-thinning and shear-thickening fluids of the power-law type. The jet is assumed to spread out in a thin layer bounded by a hydraulic jump. In addition to the stagnation-flow region, the flow domain is divided into three main regions: a developing boundary layer, fully viscous boundary layer and hydraulic jump. The anomalous behaviour of power-law fluids at small shear rate is remedied by seeking a two-layer solution in each domain. Such anomalies include the singularity of viscosity for shear-thinning fluids, and the vanishing of viscosity as well the overshoot in velocity for shear-thickening fluids. Although the rate of shear-thinning appears to affect significantly the film profile and velocity, only the overall viscosity influences the position of the hydraulic jump.