We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The p-adic numbers, the earliest of local fields, were introduced by Hensel some 70 years ago as a natural tool in algebra number theory. Today the use of this and other local fields pervades much of mathematics, yet these simple and natural concepts, which often provide remarkably easy solutions to complex problems, are not as familiar as they should be. This book, based on postgraduate lectures at Cambridge, is meant to rectify this situation by providing a fairly elementary and self-contained introduction to local fields. After a general introduction, attention centres on the p-adic numbers and their use in number theory. There follow chapters on algebraic number theory, diophantine equations and on the analysis of a p-adic variable. This book will appeal to undergraduates, and even amateurs, interested in number theory, as well as to graduate students.
The study of (special cases of) elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centres of research in number theory. This book, which is addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Weil finite basis theorem, points of finite order (Nagell-Lutz) etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the 'Riemann hypothesis for function fields') and recently developed uses of elliptic curves for factoring large integers. Prerequisites are kept to a minimum; an acquaintance with the fundamentals of Galois theory is assumed, but no knowledge either of algebraic number theory or algebraic geometry is needed. The p-adic numbers are introduced from scratch, as is the little that is needed on Galois cohomology. Many examples and exercises are included for the reader. For those new to elliptic curves, whether they are graduate students or specialists from other fields, this will be a fine introductory text.
The number theoretic properties of curves of genus 2 are attracting increasing attention. This book provides new insights into this subject; much of the material here is entirely new, and none has appeared in book form before. Included is an explicit treatment of the Jacobian, which throws new light onto the geometry of the Kummer surface. The Mordell–Weil group can then be determined for many curves, and in many non-trivial cases all rational points can be found. The results exemplify the power of computer algebra in diophantine contexts, but computer expertise is not assumed in the main text. Number theorists, algebraic geometers and workers in related areas will find that this book offers unique insights into the arithmetic of curves of genus 2.
The articles in these two volumes arose from papers given at the 1991 International Symposium on Geometric Group Theory, and they represent some of the latest thinking in this area. Many of the world's leading figures in this field attended the conference, and their contributions cover a wide diversity of topics. This second volume contains solely a ground breaking paper by Gromov, which provides a fascinating look at finitely generated groups. For anyone whose interest lies in the interplay between groups and geometry, these books will be an essential addition to their library.
This is the expanded notes of a course intended to introduce students specializing in mathematics to some of the central ideas of traditional economics. The book should be readily accessible to anyone with some training in university mathematics; more advanced mathematical tools are explained in the appendices. Thus this text could be used for undergraduate mathematics courses or as supplementary reading for students of mathematical economics.
As we rapidly approach the point at which solid-state electronic devices cease to be made any smaller, molecular scale electronics offers, perhaps, the best chance for a continued miniaturization of computational devices. We must, however, completely re-think our approach to lithography. Presented in this paper are our solution-phase and solid-support based syntheses of molecular wires of precise length and dimensions, and our methods of addressing these wires via molecular “alligator clips” to gold and platinum electrodes of macroscale dimensions.
The arithmetic (= number theory) of curves of genus 0 is well understood. For genus 1, there is a rich body of theory and conjecture, and in recent years notable success has been achieved in transforming the latter into the former. For curves of higher genus there is a rich body of theory with some spectacular successes (e.g. Faltings' proof of ‘Mordell's Conjecture’), but our command is still rudimentary. For genus 1, a concrete question about an individual curve can usually be answered by one means or another: for higher genus, this is far from the case.
For curves of genus 0 and 1 the road between general theory and particular cases is no one-way street. Numerous individual cases were investigated by amateurs as well as as by distinguished mathematicians such as Diophantos, Fermat, Euler, Sylvester, Mordell, Selmer, Birch and Swinnerton-Dyer. Regularities which emerged, sometimes quite unexpectedly, suggested theorems, which could sometimes be proved. The new theorems suggested new questions. For higher genus, existing theory is notoriously unadapted to the study of individual curves, and few have been elucidated. What is needed is a corpus of explicit concrete cases and a middlebrow arithmetic theory which would provide both a practicable means to obtain them and a framework to understand any unexpected regularities.
Such a theory will, of course, draw freely from the existing body of knowledge, but the emphasis on feasibility gives new perspectives.
Introduction. It can happen that an abelian variety of dimension 2 is isogenous to a product of two (not necessarily distinct) abelian varieties of dimension 1, i.e. elliptic curves. The first example of this seems to have given by Legendre at the age of 80 in the troisième supplément to his Théorie des fonctions elliptiques: in a review Jacobi (1832) gave one form of Theorem 1.1 below. There are infinitely many cases indexed by a natural number as parameter, but Jacobi's is particularly straightforward. We have already met it in Chapter 9, where it had to be excluded from the discussion. We shall treat it in this chapter. It occurs quite frequently for naturally arising curves. The other cases of reducibility appear to be much more difficult to handle, and we do not make the attempt. There is a treatment in Frey & Kani (1991) and a rather inconclusive discussion of the construction of explicit examples in Frey (1995). For a different approach and further references, see Kuhn (1988). See also Ruppert (1990) [use of the complex structure], Grant (1994c) [use of L-functions], Stoll (1995), pp. 1343–1344 [use of L-functions], and Flynn, Poonen & Schaefer (1995) [simple proof of irreducibility in a special case with probable wide applicability].
The straightforward case. Since what we are doing in this section is geometry, we work in the algebraic closure. We say that two curves Y2 = F(X) are equivalent if they are taken into one another by a fractional linear transformation of X and the related transformation of Y [see (1.1.3)].