Let T be an asymptotically nonexpansive self-mapping of a closed bounded and convex subset of a uniformly convex Banach space which satisfies Opial's condition. It is shown that, under certain assumptions, the sequence given by xn+1 = αnTn(xn) + (1 - αn)xn converges weakly to some fixed point of T. In arbitrary uniformly convex Banach spaces similar results are obtained concerning the strong convergence of (xn) to a fixed point of T, provided T possesses a compact iterate or satisfies a Frum-Ketkov condition of the fourth kind.