Microwave sintering possesses unique attributes and has the potential to be developed asa new technique for controlling microstructure to improve the properties of advanced ceramics. 1–6 Because microwave radiation penetrates most ceramics, uniform volumetric heating is possible. Thermal gradients, which are produced during conventional sintering because of conductive and radiative heat transfer to and within the part, can be minimized. By eliminating temperature gradients, it is possible to reduce internal stresses, which contribute to cracking of parts during sintering, and to create a more uniform microstructure, which may lead to improved mechanical properties and reliability. With uniform, volumetric temperatures, the generation of nonuniform particle/grain growth due to temperature gradients and associated sintering gradients can be regulated.