We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
from
Part III
-
Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices
By
P. R. Christensen, Planetary Exploration Laboratory Arizona State University Moeur Building 110D Tempe, AZ 85287, USA,
J. L. Bandfield, Arizona State University, MC 6305 Mars Space Flight Facility Tempe, AZ, USA,
A. D. Rogers, Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA,
Glotch R. T. D., Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA,
V. E. Hamilton, Hawaii Institute of Geophysics & Planetology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA,
S. W. Ruff, Mars Space Flight Facility Arizona State University Moeur Building, Room 131 Tempe, AZ 85287-6305, USA,
M. B. Wyatt, Brown University, Department of Geological Science, 324 Brook Street Providence, RI 02912-1846, USA
The Thermal Emission Spectrometer (TES) on Mars Global Surveyor (MGS) mapped the surface, atmosphere, and polar caps of Mars from 1997 through 2006. TES provided the first global mineral maps of Mars, and showed that the surface is dominated by primary volcanic minerals (plagioclase feldspar, pyroxene, and olivine) along with high-silica, poorly crystalline materials. Differences in the abundances of these minerals were initially grouped into two broad compositional categories that correspond to basalt and basaltic andesite. Additional analysis has identified four surface compositional groups that are spatially coherent, revealing variations in the composition of the primary crust-forming magmas through time. In general, plagioclase, high-Ca clinopyroxene, and high-silica phases are the dominant mineral groups for most regions, with lesser amounts of orthopyroxene, olivine, and pigeonite. One of the fundamental results from the TES investigation was the identification of several large deposits of crystalline hematite, including those in Meridiani Planum, that were interpreted to indicate the presence of liquid water for extended periods of time. This interpretation led to the selection of Meridiani as the target for the Opportunity rover, the first time that a planetary landing site was selected on the basis of mineralogic information. Aqueous weathering may have formed some of the high-silica phases seen in TES spectra at high latitudes, and the Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) spectrometer has detected phyllosilicates and sulfates, typically formed by aqueous weathering and deposition, in several locations.
from
Part III
-
Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices
By
P. R. Christensen, Planetary Exploration Laboratory Arizona State University Moeur Building 110D Tempe, AZ 85287, USA,
J. L. Bandfield, Arizona State University, MC 6305 Mars Space Flight Facility Tempe, AZ, USA,
R. L. Fergason, School of Earth & Space Exploration Arizona State University, PO Box 876305 Tempe, AZ 85287-6305, USA,
V. E. Hamilton, Hawaii Institute of Geophysics & Planetology, University of Hawaii, 1680 East-West Road Honolulu, HI 96822, USA,
A. D. Rogers, Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA
The Thermal Emission Imaging System (THEMIS) began mapping Mars in 2002 on the Mars Odyssey spacecraft. This instrument provides nine infrared and five visible surface-sensing and atmospheric bands, with spatial resolutions of 100 m in the IR and 18 m in the visible. THEMIS data have been used to investigate the composition and physical properties of the surface and polar ices, as well as to study atmospheric temperature, dust, and water vapor. THEMIS provides an excellent complement to the hyperspectral, 3–6 km spatial resolution Thermal Emission Spectrometer (TES) observations, and the two instruments have been used together to map the distribution of geologic units and to determine their detailed mineralogy. Among the major findings to date is the discovery of a diversity in volcanic compositions, from ultramafic olivine-rich basalts through basalts, dacite cones and flows, and granitic rocks uplifted by impact. These observations indicate that the Martian crust, while dominated by basalt, has undergone many of the processes of igneous differentiation that occur on Earth. THEMIS has not detected any carbonate outcrops at 100 m scales, suggesting that carbonate rocks have not formed on Mars and has also not detected any evidence for near-surface volcanic activity, liquid water, or ice that is close enough to the surface to produce a measurable thermal anomaly. THEMIS nighttime temperature measurements have shown the existence of exposed bedrock at 100 m to km scales, and layered materials of differing physical properties, with inferred differences in the processes that deposited or consolidated them.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.