We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the context of an on-going global pandemic that has demanded increasingly more of our Emergency Medical Services (EMS) clinicians, the health humanities can function to aid in educational training, promoting resilience and wellness, and allowing opportunity for self-expression to help prevent vicarious trauma.
As the social, cultural, and political landscape of the United States continues to require an expanded scope of practice from our EMS clinicians, it is critical that the health humanities are implemented as not only part of EMS training, but also as part of continued practice in order to ensure the highest quality patient-centered care while protecting the longevity and resilience of EMS clinicians.
Rock debris covers ~30% of glacier ablation areas in the Central Himalaya and modifies the impact of atmospheric conditions on mass balance. The thermal properties of supraglacial debris are diurnally variable but remain poorly constrained for monsoon-influenced glaciers over the timescale of the ablation season. We measured vertical debris profile temperatures at 12 sites on four glaciers in the Everest region with debris thickness ranging from 0.08 to 2.8 m. Typically, the length of the ice ablation season beneath supraglacial debris was 160 days (15 May to 22 October)—a month longer than the monsoon season. Debris temperature gradients were approximately linear (r2 > 0.83), measured as −40°C m–1 where debris was up to 0.1 m thick, −20°C m–1 for debris 0.1–0.5 m thick, and −4°C m–1 for debris greater than 0.5 m thick. Our results demonstrate that the influence of supraglacial debris on the temperature of the underlying ice surface, and therefore melt, is stable at a seasonal timescale and can be estimated from near-surface temperature. These results have the potential to greatly improve the representation of ablation in calculations of debris-covered glacier mass balance and projections of their response to climate change.
Annual monitoring of physical health of people with severe mental illness (SMI) in primary or secondary care is recommended in England.
Objective
The SMI Health Improvement Profile (HIP) was developed to target physical well-being in SMI through the role of the mental health nurse.
Aim
The primary aim was to investigate if health checks performed by community mental health nurses (CMHNs) trained to use the HIP improved the physical well-being of patients with SMI at 12 months.
Methods
A single blind, parallel group randomised controlled trial of training to use the HIP (clustered at the level of the nurse). Physical well-being was measured in study patients using the physical component score of the SF36v2 at baseline and at 12 months.
Results
Sixty CMHNs (working with 173 patients) were assigned to the HIP programme (training to use the HIP) or treatment as usual. The HIP was completed with 38 (42%) patients at baseline and 22 (24%) at follow-up in the HIP programme group. No effect of the HIP programme on physical health-related quality of life of study patients was identified, a finding supported by per protocol analyses.
Conclusions
This study found no evidence that CMHN delivered health checks following training to use the HIP are effective at improving the physical well-being of SMI patients at one year. More attention to methods that aim to enable the delivery, receipt and enactment of evidence-based interventions to improve physical health outcomes in this population is urgently required.
ISRCTN: 41137900.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
On September 20, 2017, Hurricane Maria made landfall on Puerto Rico as a category 4 storm, resulting in serious widespread impact across the island, including communication and power outages, water systems impairment, and damage to life-saving infrastructure. In collaboration with the Puerto Rico Department of Health, the Public Health Branch (PHB), operating under the Department of Health and Human Services Incident Response Coordination Team, was tasked with completing assessments of health-care facilities in Puerto Rico to determine infrastructure capabilities and post-hurricane capacity. Additionally, in response to significant data entry and presentation needs, the PHB leadership worked with the Puerto Rico Planning Board to develop and test a new app-based infrastructure capacity assessment tool. Assessments of hospitals were initiated September 28, 2017, and completed November 10, 2017 (n = 64 hospitals, 97%). Assessments of health-care centers were initiated on October 7, 2017, with 186 health-care centers (87%) assessed through November 18, 2017. All hospitals had working communications; however, 9% (n = 17) of health-care centers reported no communication capabilities. For the health-care centers, 114 (61%) reported they were operational but had sustainment needs. In conclusion, health-care facility assessments indicated structural damage issues and operational capacity decreases, while health-care centers reported loss of communication capabilities post-Hurricane Maria.
Blue whales (Balaenoptera musculus) are currently listed as Endangered on the International Union for Conservation of Nature’s (IUCN) Red List. Collisions with ships are an ongoing threat to their recovery. The goal of the WhaleWatch project was to create a near real-time tool predicting whale occurrence and densities in US West Coast waters to identify high-use areas and help reduce whale mortality from ship strikes. We combined remotely sensed environmental data and satellite telemetry of blue whales to create a habitat preference model and near real-time tool. During the development of WhaleWatch, several key lessons were learned: the importance of end user involvement in product development; the requirement of large telemetry data sets to describe species distributions over multiple years; the critical need for satellite-derived environmental data to develop the habitat model and to operationalise predictions based on current ocean conditions; the relevance of assessing biological realism versus statistical model fit in habitat models; the value of evaluating model performance using independent data sets; and the benefit of automation to improve sustainability beyond the lifetime of the initial development project. These near real-time tools will require regular evaluation and updating in response to changes in climate that alter the relationships between ocean conditions and marine species habitat use.
n-3 Fatty acids are associated with better cardiovascular and cognitive health. However, the concentration of EPA, DPA and DHA in different plasma lipid pools differs and factors influencing this heterogeneity are poorly understood. Our aim was to evaluate the association of oily fish intake, sex, age, BMI and APOE genotype with concentrations of EPA, DPA and DHA in plasma phosphatidylcholine (PC), NEFA, cholesteryl esters (CE) and TAG. Healthy adults (148 male, 158 female, age 20–71 years) were recruited according to APOE genotype, sex and age. The fatty acid composition was determined by GC. Oily fish intake was positively associated with EPA in PC, CE and TAG, DPA in TAG, and DHA in all fractions (P≤0·008). There was a positive association between age and EPA in PC, CE and TAG, DPA in NEFA and CE, and DHA in PC and CE (P≤0·034). DPA was higher in TAG in males than females (P<0·001). There was a positive association between BMI and DPA and DHA in TAG (P<0·006 and 0·02, respectively). APOE genotype×sex interactions were observed: the APOE4 allele associated with higher EPA in males (P=0·002), and there was also evidence for higher DPA and DHA (P≤0·032). In conclusion, EPA, DPA and DHA in plasma lipids are associated with oily fish intake, sex, age, BMI and APOE genotype. Such insights may be used to better understand the link between plasma fatty acid profiles and dietary exposure and may influence intake recommendations across population subgroups.
Thin film tin sulphide (SnS) was deposited on to molybdenum (Mo) substrates using metal organic chemical vapor deposition at 470°C using tetraethyltin and ditertiarybutylsulfide as precursors. In situ mass spectroscopy was used to study the exhaust gas species downstream of the reaction zone. The precursor vapor carrier gas was either nitrogen or hydrogen, thin film SnS only forming when the latter was used. Mass spectroscopy determined that hydrogen sulfide was being produced and playing a critical role in the vapor phase reaction process and adsorption of tin and sulfur on to the Mo surface. As-grown grain sizes were determined by scanning electron microscopy and were observed to be large averaging around 2 microns across. X-ray diffraction showed the films to be single phase SnS without any parasitic Sn2S3 or SnS2 phases, with a small amount of MoS2 also being detected.
The morphology of englacial drainage networks and their temporal evolution are poorly characterised, particularly within cold ice masses. At present, direct observations of englacial channels are restricted in both spatial and temporal resolution. Through novel use of a terrestrial laser scanning (TLS) system, the interior geometry of an englacial channel in Austre Brøggerbreen, Svalbard, was reconstructed and mapped. Twenty-eight laser scan surveys were conducted in March 2016, capturing the glacier surface around a moulin entrance and the uppermost 122 m reach of the adjoining conduit. The resulting point clouds provide detailed 3-D visualisation of the channel with point accuracy of 6.54 mm, despite low (<60%) overall laser returns as a result of the physical and optical properties of the clean ice, snow, hoar frost and sediment surfaces forming the conduit interior. These point clouds are used to map the conduit morphology, enabling extraction of millimetre-to-centimetre scale geometric measurements. The conduit meanders at a depth of 48 m, with a sinuosity of 2.7, exhibiting teardrop shaped cross-section morphology. This improvement upon traditional surveying techniques demonstrates the potential of TLS as an investigative tool to elucidate the nature of glacier hydrological networks, through reconstruction of channel geometry and wall composition.
Salmonella is a leading cause of bacterial foodborne illness. We report the collaborative investigative efforts of US and Canadian public health officials during the 2013–2014 international outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder. The investigation included open-ended interviews of ill persons, traceback, product testing, facility inspections, and trace forward. Ninety-four persons infected with outbreak strains from 16 states and four provinces were identified; 21% were hospitalized and none died. Fifty-four (96%) of 56 persons who consumed chia seed powder, reported 13 different brands that traced back to a single Canadian firm, distributed by four US and eight Canadian companies. Laboratory testing yielded outbreak strains from leftover and intact product. Contaminated product was recalled. Although chia seed powder is a novel outbreak vehicle, sprouted seeds are recognized as an important cause of foodborne illness; firms should follow available guidance to reduce the risk of bacterial contamination during sprouting.
Inverse associations between dairy consumption and CVD have been reported in several epidemiological studies. Our objective was to conduct a meta-analysis of prospective cohort studies of dairy intake and CVD. A comprehensive literature search was conducted to identify studies that reported risk estimates for total dairy intake, individual dairy products, low/full-fat dairy intake, Ca from dairy sources and CVD, CHD and stroke. Random-effects meta-analyses were used to generate summary relative risk estimates (SRRE) for high v. low intake and stratified intake dose–response analyses. Additional dose–response analyses were performed. Heterogeneity was examined in sub-group and sensitivity analyses. In total, thirty-one unique cohort studies were identified and included in the meta-analysis. Several statistically significant SRRE below 1.0 were observed, namely for total dairy intake and stroke (SRRE=0·91; 95 % CI 0·83, 0·99), cheese intake and CHD (SRRE=0·82; 95 % CI 0·72, 0·93) and stroke (SRRE=0·87; 95 % CI 0·77, 0·99), and Ca from dairy sources and stroke (SRRE=0·69; 95 % CI 0·60, 0·81). However, there was little evidence for inverse dose–response relationships between the dairy variables and CHD and stroke after adjusting for within-study covariance. The results of this meta-analysis of prospective cohort studies have shown that dairy consumption may be associated with reduced risks of CVD, although additional data are needed to more comprehensively examine potential dose–response patterns.
The 2013 multistate outbreaks contributed to the largest annual number of reported US cases of cyclosporiasis since 1997. In this paper we focus on investigations in Texas. We defined an outbreak-associated case as laboratory-confirmed cyclosporiasis in a person with illness onset between 1 June and 31 August 2013, with no history of international travel in the previous 14 days. Epidemiological, environmental, and traceback investigations were conducted. Of the 631 cases reported in the multistate outbreaks, Texas reported the greatest number of cases, 270 (43%). More than 70 clusters were identified in Texas, four of which were further investigated. One restaurant-associated cluster of 25 case-patients was selected for a case-control study. Consumption of cilantro was most strongly associated with illness on meal date-matched analysis (matched odds ratio 19·8, 95% confidence interval 4·0–∞). All case-patients in the other three clusters investigated also ate cilantro. Traceback investigations converged on three suppliers in Puebla, Mexico. Cilantro was the vehicle of infection in the four clusters investigated; the temporal association of these clusters with the large overall increase in cyclosporiasis cases in Texas suggests cilantro was the vehicle of infection for many other cases. However, the paucity of epidemiological and traceback information does not allow for a conclusive determination; moreover, molecular epidemiological tools for cyclosporiasis that could provide more definitive linkage between case clusters are needed.
An inline metal organic chemical vapor deposition system was used to deposit tin sulfide at temperatures >500 °C. Tetramethyltin was used as the tin source and diethyldisulfide as the sulfur source. An overhead injector configuration was used delivering both precursors directly over the substrate. The tin and sulfur precursors were premixed before injection to improve chemical reaction in the gas phase. Growth temperatures 500 – 540 °C were employed producing films with approximate 1:1 stoichiometry of Sn and S detected by energy dispersive x-ray spectroscopy. X-ray diffraction showed there to be mixed phases with Sn2S3 present with SnS.
Data on intra-specific variability for seed oil content, physical characteristics and fatty acid composition in Cucurbita moschata and Cucurbita argyrosperma are lacking in the scientific literature. We examined 528 genebank accessions of C. moschata and 166 accessions of C. argyrosperma – which included members of both subsp. argyrosperma and subsp. sororia – for seed oil content, oil physical characteristics and fatty acid composition. The oil of both species had near-identical viscosities, viscosity indices, colour and oxidative stabilities while the oil of C. argyrosperma had a slightly higher pour point, cloud point, percentage of free fatty acids and acid value when compared with C. moschata. Mean oil content values of the two species were similar at 28.7 ± /2.7 and 29.8 ± /2.6% for C. moschata and C. argyrosperma, respectively. The mean seed oil content of C. argyrosperma subsp. argyrosperma var. palmeri (32.1%) was significantly higher than that of the other taxa examined. The average (mean) percentage of total seed weight attributable to the kernel was 77.2% in C. moschata (n= 34) and 74.5% in C. argyrosperma (n= 46). The percentage of total seed weight attributable to the hull was correlated with seed oil content, in both species. Linoleic was the predominant fatty acid in all the samples analysed. Means for individual fatty acids in C. moschata were linoleic 48.5%, oleic 22.6%, palmitic 20.7% and stearic 7.5%. Means for individual fatty acids in C. argyrosperma were linoleic 47.3%, oleic 27.5%, palmitic 16.5% and stearic 8.0%.
Thin film deposition process and integrated scribing technologies are key to forming large area Cadmium Telluride (CdTe) modules. In this paper, baseline Cd1-xZnxS/CdTe solar cells were deposited by atmospheric-pressure metal organic chemical vapor deposition (AP-MOCVD) onto commercially available ITO coated boro-aluminosilicate glass substrates. Thermally evaporated gold contacts were compared with a screen printed stack of carbon/silver back contacts in order to move towards large area modules. P2 laser scribing parameters have been reported along with a comparison of mechanical and laser scribing process for the scribe lines, using a UV Nd:YAG laser at 355 nm and 532 nm fiber laser.
In a constant effort to capture effectively more of the spectral range from the sun, multi-junction cells are being investigated. In this context, the marriage of thin film and dye-sensitized solar cells (DSC) PV technologies may be able to offer greater efficiency whilst maintaining the benefits of each individual technology. DSC devices offer advantages in the nature of both the metal oxide photo-electrode and dye absorption bands, which can be tuned to vary the optical performance of this part of a tandem device, while CdTe cells absorb the majority of light above their band-gap in only a few microns of thickness. The key challenge is to assess the optical losses with the goal of reaching a net gain in photocurrent and consequently increased conversion efficiency. This study reports on the influence of optical losses from various parts of the stacked tandem structure using UV-VIS spectrometry and EQE measurements. A net gain in photocurrent was achieved from a model developed for the DSC/CdTe mechanically stacked tandem structure.