Using lithography, and selective etching the Si1-xGex/Si multiple quantum well wires are fabricated. The characteristics of the selective chemical etching of Si1-xGex and Si are investigated, and high-performance etchants are developed. The etchant composed of HF:NH4F:H202:NH4OH is used for the etching of the epitaxial Si1-xGex films, the selectivity is better than 250 for Si0.76Ge0.24, and increases with the increase of the mole fraction x of Ge. Another etchant composed of NH4NO3:NH4OH is used for the etching of Si, the selectivity is higher than 1000 ( x ≥ 0.1 ). A preliminary photoluminescence (PL) result obtained from the Si0.76Ge0.24 multiple quantum well wires is presented. As the linewidth of the wires is reduced down to 50 nm, an intense complicated PL spectrum in the wavelength range of 500∼800 nm is observed at liquid nitrogen temperature. The origin of such spectrum is unclear.