We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new transmission electron microscopy (TEM) specimen preparation method that utilizes a combination of focused ion beam (FIB) methods and ultramicrotomy is demonstrated. This combined method retains the benefit of site-specific sampling by FIB but eliminates ion beam-induced damage except at specimen edges and allows recovery of many consecutive sections. It is best applied to porous and/or fine-grained materials that are amenable to ultramicrotomy but are located in bulk samples that are not. The method is ideal for unique samples from which every specimen is precious, and we demonstrate its utility on fine-grained material from the one-of-a-kind Paris meteorite. Compared with a specimen prepared by conventional FIB methods, the final sections are uniformly thin and free from re-deposition and curtaining artifacts common in FIB specimens prepared from porous, heterogeneous samples.
Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.
Methods using X-ray fluorescence have been developed to identify cometary material captured in aerogel during the NASA Stardust mission to Comet 81P/Wild 2. These analytical methods are necessitated by the levels of trace contaminants present in the aerogel. The cometary material disaggregates during deceleration in the aerogel, so fluorescence mapping of the entire track (which can be several millimeters long) is necessary. Distinguishing those pixels which have cometary material and aerogel from those which have only cometary material can be very challenging. We have chosen a “dual threshold” method, with some pixels clearly having only aerogel (plus contaminants) and other pixels clearly having cometary and aerogel material. Between these two threshold levels is a set of pixels which cannot be easily ascribed to one or the other. By leaving these pixels out of the analysis, the estimate of cometary material is improved.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.