Laboratory experiments were done to better understand the electrical conduction mechanisms of impure, polycrystalline ice as represented by the 2503 m Dome Fuji (Antarctica) ice core. Also, two electrical measurement techniques for ice cores were compared and their usefulness for determining the acidity of ice cores was studied. We measured the electrical conductivity and complex permittivity of 167 slab-ice samples at frequencies from 20 Hz to 1 MHz. Measurements were performed at –21˚C for all samples, and at –110˚ to –20˚C for several samples, to examine the effects of temperature. We found linear relations between the AC loss factor and the molarity of sulfuric acid, and between the high-frequency-limit conductivity and the AC loss factor. Thus, the acidity levels can be determined from the AC loss factor. In contrast, the electrical conductivity measurement (ECM) current correlated weakly with the other parameters; furthermore, the correlation worsens at larger signal. In several samples containing high acidity, the dielectric properties had distinct changes near –81˚C. We argue that these changes were caused by a change from a liquid-vein-mediated conduction mechanism above the eutectic point of the solute/water/ ice system to a solid-phase conduction mechanism at lower temperatures.