We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the Netherlands, various FFQs have been administered in large cohort studies, which hampers comparison and pooling of dietary data. The present study aimed to describe the development of a standardized Dutch FFQ, FFQ-NL1.0, and assess its compatibility with existing Dutch FFQs.
Design
Dutch FFQTOOLTM was used to develop the FFQ-NL1.0 by selecting food items with the largest contributions to total intake and explained variance in intake of energy and thirty-nine nutrients in adults aged 25–69 years from the Dutch National Food Consumption Survey (DNFCS) 2007–2010. Compatibility with the Maastricht-FFQ, Wageningen-FFQ and EPICNL-FFQ was assessed by comparing the number of food items, the covered energy and nutrient intake, and the covered variance in intake.
Results
FFQ-NL1.0 comprised 160 food items, v. 253, 183 and 154 food items for the Maastricht-FFQ, Wageningen-FFQ and EPICNL-FFQ, respectively. FFQ-NL1.0 covered ≥85 % of energy and all nutrients reported in the DNFCS. Covered variance in intake ranged from 57 to 99 % for energy and macronutrients, and from 45 to 93 % for micronutrients. Differences between FFQ-NL1.0 and the other FFQs in covered nutrient intake and covered variance in intake were <5 % for energy and all macronutrients. For micronutrients, differences between FFQ-NL and other FFQs in covered level of intake were <15 %, but differences in covered variance were much larger, the maximum difference being 36 %.
Conclusions
The FFQ-NL1.0 was compatible with other FFQs regarding energy and macronutrient intake. However, compatibility for covered variance of intake was limited for some of the micronutrients. If implemented in existing cohorts, it is advised to administer the old and the new FFQ in combination to derive calibration factors.
To validate an FFQ designed to estimate energy intake in children against doubly labelled water (DLW). To investigate how quality control and standard beverage portion sizes affect the validity of the FFQ.
Design
Thirty healthy children, aged 4–6 years, participated. Total energy expenditure (EE) was measured by the DLW method during an observation period of 15 d. At the end of this period parents filled out an FFQ designed to assess the child’s habitual energy intake (EI) of the preceding four weeks.
Setting
Validation study in The Netherlands.
Subjects
Thirty healthy children (fifteen boys and fifteen girls), aged 4–6 years.
Results
Mean EI (6117 (sd 1025) kJ/d) did not differ significantly from mean EE (6286 (sd 971) kJ/d; P = 0·15); the mean EI:EE ratio was 0·98. The Pearson correlation coefficient between EI and EE was 0·62. The Bland–Altman plot showed no systematic bias and a constant bias close to zero. Less intensive quality control of the FFQ maintained the mean EI:EE ratio and decreased the correlation slightly. Using standard instead of individually measured beverage portion sizes decreased the mean EI:EE ratio, but maintained the correlation.
Conclusions
It can be concluded that the developed FFQ is a valid instrument to estimate mean energy intake in a group of 4- to 6-year-old children and performs reasonably well to rank the subjects with respect to energy intake. It is therefore a useful instrument to estimate energy intake in children in surveys and epidemiological studies in The Netherlands.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.