We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the wide application of ultra-microtome sectioning in the preparation of transmission electron microscopy (TEM) specimens with bio- and organic materials, here, we report an ultra-microtome-based method for the preparation of TEM specimens from cathodes of Li-ion batteries. The ultra-microtome sectioning reduces the sample thickness to tens of nanometers and yields atomic resolution from the core region of particles of hundreds of nanometers. Analysis indicates that the mechanical cross-sectioning introduces no observable microstructural artifacts or structural damage, such as microcracking and nanoporosity. These results demonstrate the high efficiency of the ultra-microtome approach in preparing well-thinned specimens of particulate materials that allow for atomic-scale TEM imaging of a large number of sectioned particles in one single TEM specimen, thereby providing statistically significant results of the TEM analysis.