We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For supercritical multitype Markov branching processes in continuous time, we investigate the evolution of types along those lineages that survive up to some time t. We establish almost-sure convergence theorems for both time and population averages of ancestral types (conditioned on nonextinction), and identify the mutation process describing the type evolution along typical lineages. An important tool is a representation of the family tree in terms of a suitable size-biased tree with trunk. As a by-product, this representation allows a ‘conceptual proof’ (in the sense of Kurtz et al.) of the continuous-time version of the Kesten-Stigum theorem.
We give an alternative proof of a point-process version of the FKG–Holley–Preston inequality which provides a sufficient condition for stochastic domination of probability measures, and for positive correlations of increasing functions.
Let $S(N)$ be a random walk on a countable abelian group
$G$ which acts on a probability space $E$ by measure-preserving
transformations
$(T_v)_{v\in G}$. For any $\Lambda \subset E$ we consider the random return time
$\tau$ at which $T_{S(\tau)}\in\Lambda$. We show that the corresponding induced
skew product transformation is K-mixing whenever a natural subgroup of
$G$ acts ergodically on $E$.
We consider d-dimensional lattice systems of bounded real-valued spins with ferromagnetic random interaction between nearest neighbours. We establish an outer and, in two dimensions, an inner bound of the parameter region where spontaneous magnetization occurs. These bounds provide an estimate of the singularity of the critical temperature at the threshold for percolation through active bonds. We derive a relationship between the ferromagnetic region and the percolative region for a correlated site–bond percolation problem, and we investigate the latter. Bounds for the level sets of the expected magnetization are also obtained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.