We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Feeding management of the postnatal and preweaning calf has an important impact on calf growth and development during this critical period and affects the health and well-being of the calves. After birth, an immediate and sufficient colostrum supply is a prerequisite for successful calf rearing. Colostrum provides high amounts of nutrient as well as non-nutrient factors that promote the immune system and intestinal maturation of the calf. The maturation and function of the neonatal intestine enable the calf to digest and absorb the nutrients provided by colostrum and milk. Therefore, colostrum intake supports the start of anabolic processes in several tissues, stimulating postnatal body growth and organ development. After the colostrum feeding period, an intensive milk feeding protocol, that is, at least 20% of BW milk intake/day, is required to realise the calf potential for growth and organ development during the preweaning period. Insufficient milk intake delays postnatal growth and may have detrimental effects on organ development, for example, the intestine and the mammary gland. The somatotropic axis as the main postnatal endocrine regulatory system for body growth is stimulated by the intake of high amounts of colostrum and milk and indicates the promotion of anabolic metabolism in calves. The development of the forestomach is an important issue during the preweaning period in calves, and forestomach maturation is best achieved by solid feed intake. Unfortunately, intensive milk-feeding programmes compromise solid feed intake during the first weeks of life. In the more natural situation for beef calves, when milk and solid feed intake occurs at the same time, calves benefit from the high milk intake as evidenced by enhanced body growth and organ maturation without impaired forestomach development during weaning. To realise an intensive milk-feeding programme, it is recommended that the weaning process should not start too early and that solid feed intake should be at a high extent despite intensive milk feeding. A feeding concept based on intensive milk feeding prevents hunger and abnormal behaviour of the calves and fits the principles of animal welfare during preweaning calf rearing. Studies on milk performance in dairy cows indicate that feeding management during early calf rearing influences lifetime performance. Therefore, an intensive milk-feeding programme affects immediate as well as long-term performance, probably by programming metabolic pathways during the preweaning period.
Green rusts, GRs, can act as both sorbents and reductants towards selected pollutants. Organo-GRs are expected to combine these properties with a high affinity for hydrophobic substances. A novel organo-GR, GRLAS, was synthesized by incorporating a mixture of linear alkylbenzenesulphonates (LAS) into the interlayer space of synthetic sulphate green rust, GRSO4 . Mössbauer analysis of GRLAS indicates that the structure of the organo-GR is very similar to that of the initial GRSO4 with regard to the FeII/FeIII ratio and local coordination of Fe atoms. X-ray diffraction demonstrates that the GRLAS formed was well ordered, although a mixture of surfactant was used for intercalation. The basal spacings of the GRLAS and the kinetics of the ion-exchange process were dependent on the initial surfactant loading; basal spacings of ~2.85 nm were obtained at LAS solution concentrations >10 mM. The ratio LASadsorbed/SO42–desorbed significantly exceeded the stoichiometric ratio of 2 during the initial part of the ion-exchange process (t = 5 h). However, this ratio was reached progressively with time. GRSO4 preferentially sorbed LAS homologues with long alkyl chains over short ones. Carbon tetrachloride was successfully adsorbed into GRLAS. The adsorption isotherm was linear with a distribution coefficient, Kd, of 505±19 litre kg–1.
Recent studies have provided strong evidence that variation in the gene neurocan (NCAN, rs1064395) is a common risk factor for bipolar disorder (BD) and schizophrenia. However, the possible relevance of NCAN variation to disease mechanisms in the human brain has not yet been explored. Thus, to identify a putative pathomechanism, we tested whether the risk allele has an influence on cortical thickness and folding in a well-characterized sample of patients with schizophrenia and healthy controls.
Method
Sixty-three patients and 65 controls underwent T1-weighted magnetic resonance imaging (MRI) and were genotyped for the single nucleotide polymorphism (SNP) rs1064395. Folding and thickness were analysed on a node-by-node basis using a surface-based approach (FreeSurfer).
Results
In patients, NCAN risk status (defined by AA and AG carriers) was found to be associated with higher folding in the right lateral occipital region and at a trend level for the left dorsolateral prefrontal cortex. Controls did not show any association (p > 0.05). For cortical thickness, there was no significant effect in either patients or controls.
Conclusions
This study is the first to describe an effect of the NCAN risk variant on brain structure. Our data show that the NCAN risk allele influences cortical folding in the occipital and prefrontal cortex, which may establish disease susceptibility during neurodevelopment. The findings suggest that NCAN is involved in visual processing and top-down cognitive functioning. Both major cognitive processes are known to be disturbed in schizophrenia. Moreover, our study reveals new evidence for a specific genetic influence on local cortical folding in schizophrenia.
The fast ignitor concept for inertial confinement fusion relies on the generation of hot electrons, produced by a short-pulse ultrahigh intensity laser, which propagate through high-density plasma to deposit their energy in the compressed fuel core and heat it to ignition. In preliminary experiments designed to investigate deep heating of high-density matter, we used a 20 joule, 0.5–30 ps laser to heat solid targets, and used emission spectroscopy to measure plasma temperatures and densities achieved at large depths (2–20 microns) away from the initial target surface. The targets consisted of an Al tracer layer buried within a massive CH slab; H-like and He-like line emission was then used to diagnose plasma conditions. We observe spectra from tracer layers buried up to 20 microns deep, measure emission durations of up to 200 ps, measure plasma temperatures up to Te=650 eV, and measure electron densities above 1023 cm−3. Analysis is in progress, but the data are in reasonable agreement with heating simulations when space-charge induced inhibition is included in hot-electron transport, and this supports the conclusion that the deep heating is initiated by hot electrons.
An outbreak of haemolytic uraemic syndrome (HUS) among children caused by infection with sorbitol-fermenting enterohaemorrhagic Escherichia coli O157:H− (SF EHEC O157:H−) occurred in Germany in 2002. This pathogen has caused several outbreaks so far, yet its reservoir and routes of transmission remain unknown. SF EHEC O157:H− is easily missed as most laboratory protocols target the more common sorbitol non-fermenting strains. We performed active case-finding, extensive exploratory interviews and a case-control study. Clinical and environmental samples were screened for SF EHEC O157:H− and the isolates were subtyped by pulsed-field gel electrophoresis. We identified 38 case-patients in 11 federal states. Four case-patients died during the acute phase (case-fatality ratio 11%). The case-control study could not identify a single vehicle or source. Further studies are necessary to identify the pathogen's reservoir(s). Stool samples of patients with HUS should be tested with an adequate microbiological set-up to quickly identify SF EHEC O157:H−.
During 2002–2003 increased numbers of notified salmonellosis due to S. enterica serovar Agona were observed in Germany. In order to understand the recent spread of this serovar and to trace the route of infection to its source, a new phage-typing scheme and pulsed field gel electrophoresis (PFGE) were used to analyse these isolates. By using 14 bacteriophages, 52 phage types were distinguished among the S. Agona strains. PFGE also differentiated 52 different patterns. A combination of both methods generated 94 clonal types among 165 S. Agona strains originating from Germany and other countries including the United States, United Arab Emirates, Turkey, India, Austria and Finland, indicating a great biological diversity within this serovar. However, 36 recent S. Agona isolates from infantile gastroenteritis in Germany, from an untreated batch of aniseed imported from Turkey and from fennel-aniseed-caraway infusion (packed in tea bags) revealed clonal identity indicating their epidemiological relatedness as a new source of infection. It is suggested that strains of S. Agona will continue to be of public health concern, and that phage typing together with PFGE typing should be applied as reliable and rapid tools for epidemiological subtyping and future monitoring.
Films of (111) oriented self-polarized, tetragonal ferroelectric PZT crystallites on (100)Si/SiO2(250 nm)/(111) Pt (50 nm) have been investigated by STM, AFM and SAXS. After metallization of the PZT surface with a Cr-Ni film (5.2 nm thickness) or a Ti film (5.0 nm thickness), single domains were visible on the metal surface by STM measurements as parallel stripes. The lamellar stripes had a width of 10.5 – 25.2 nm and a vertical corrugation of 0.9 – 3.0 nm at the intersection line of the domain walls with the crystallite surface.
High resolution AFM with EBD supertips on unmetallized samples revealed areas of typically several µm in diameter showing crystallites with perfectly parallel aligned (90°) domains of 10 - 15 nm width with their boundaries along {110} planes. Single domain walls were visible as a trace on the surface by a negative corrugation effect of 1.0 – 1.5 nm. This corrugation is assumed to be a reflection of the strain distribution normal to the surface. Furthermore, coherency (oxygen) defects are accumulated at the interface between 90 ° twin domains.
SAXS investigations allowed to estimate a mean value of domain thickness of 17.5 nm. Exertion of stress (5.1 104Nm−2) to the film resulted in an increase of domain width by ∼1%.
Thick silicon films with good electronic quality have been prepared by glow discharge of He-diluted SiH4 at a substrate temperature ∼150°C and subsequent annealing at 160°C for about 100 hours. The stress in the films obtained this way decreased to ∼100 MPa compared to the 350 MPa in conventional a-Si:H. The post-annealing helped to reduce the ionized dangling bond density from 2.5 × 1015 cm−3 to 7 × 1014 cm−3 without changing the internal stress. IR spectroscopy and hydrogen effusion measurements implied the existence of microvoids and tiny crystallites in the material showing satisfactory electronic properties. P-I-N diodes for radiation detection applications have been realized out of the new material.
In many applications, x-ray mulhilayer mirrors are exposed to high peak fluxes of x-rays with subsequent damage to the mirror. Mirror damage is a particularly severe problem with the use of multilayers as cavity optics for short wavelength x-ray lasers. Intense optical and x-ray radiation, from the x-ray laser plasma amplifier, often damages the multilayer mirror on time scales of hundreds of picoseconds. The phenomenon of multilayer mirror damage by pulsed xray emission has been studied using short duration (500 psec) bursts of soft x-rays from a laser produced gold plasma. The results of the experiments will be compared with some simple models and the possibility of increasing the damage thresholds of short wavelength multilayer mirrors will be discussed.
The effect of vitamin A deficiency or the lentogenic La Sota strain of Newcastle disease virus (NDV) infection, or both, on immunoglobulin (IgA and IgM) levels in bile and plasma were investigated. In addition, tissue distribution of IgA-, IgG- and IgM-containing cells was studied to establish the source of these Ig. Chickens (1-d-old) with limited vitamin A reserves were fed ad lib. on diets containing either marginal or adequate levels of vitamin A. At 4 weeks of age, half the chickens in each group were infected with NDV. The number of IgA- and IgM-containing cells was not significantly affected by vitamin A deficiency, demonstrating that neither class-switching nor homing of Ig-containing cells is influenced by vitamin A deficiency. Although bile IgM levels were not significantly different in vitamin A-deficient chickens compared with normal chickens, IgA levels were significantly lower. This decrease was even more pronounced in deficient NDV-infected chickens, despite the higher number of IgA-containing cells found in these birds. These results, together with the slightly increased levels of IgA in plasma of vitamin A-deficient chickens, suggest that the hepatobiliary transport of IgA is impaired by vitamin A deficiency and possibly also by NDV infection, although disturbed secretion by IgA-containing cells cannot be excluded
Given the vast amount of literature that has been published about bomber command's role during the Second World War, it might seem, at first sight, that there was not much to add. The magisterial volumes of the official history written by Sir Charles Webster and Dr Noble Frankland appear to have said all there is to say; and to them must now be added numerous books which they have helped to engender, such as – to mention but the most recent two – those of John Terraine and Max Hastings.
Hitler's foreign policy is still an area of widespread interest - particularly the question of its inner coherence. The present consensus goes back to the early 1950s and 1960s, when the German attack upon Russia was viewed as one stage in Hitler's quest for European hegemony or even world domination. While Alan Bullock viewed Hitler as an opportunist, Hugh Trevor-Roper in his essay on Hitler's war aims interpreted Hitler's invasion of Russia as a systematic step in Hitler's programme. Since then this model has been highly refined and systematized, notably by Andreas Hillgruber, who argues that Hitler's foreign policy programme had already been formulated long before he came to power, particularly in Mein Kampf and Hitler's Second book. On this model National Socialist foreign policy was programmatically fixed and Hillgruber goes as far to say that Hitler's programme ‘alone determined the great line of German policy in general’ and that he devoted all the energies available to him to realizing it. Yet even before Hillgruber had formulated his model, case studies were available which appeared to contradict its inner coherence and logic. Serious objections have also been raised by Martin Broszat, who describes Hitler's idea of an eastern empire as a ‘metaphor and Utopian figure of speech’.
In this paper, we present preliminary results of soft X-ray diffuse background observations. We observed two particular regions of the sky in the 0.3–1.5 keV range. The detection system consisted of three independent, 1 cm diameter, cooled solid state detectors. Nearly overlapping fields of view subtended a solid angle of approximately 1/4 sr. Except for the field of view, the whole set was similar to that described in Schnopper et al. (1982) (hereafter referred to as paper 1). This system was flown on board a three-axis stalibized rocket. The flight took place at White Sands Missile Range on 1981 May 4 at 0755 UT.