We discuss the properties of semiconducting iron silicides, grown epitaxially on Si(001) and Si(111) by molecular beam epitaxy. The growth on Si (111) involves phase transitions from epitaxially stabilized metallic phases, leading to larger epitaxial β-FeSi2 grains than most other deposition procedures. The structural and electric properties of β-FeSi2/Si(001) are improved considerably for growth temperatures above 650 °C. Hall mobilities of p—conducting films reach values up to 600 cm2/Vsec at 100 K, at carrier densities below 1017 cm−3. Despite of the high majority carrier mobility and low carrier density, the photoelectric response of p-β-FeSi2/n-Si(001) diodes does not yield any significant contribution from the silicide, however, in accordance with the expected band structure diagram.