We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We assessed the effectiveness of heterologous vaccination strategy in immunocompromised individuals regarding COVID-19 outcomes, comparing it to homologous approaches.
Design:
Systematic literature review/meta-analysis.
Methods:
We searched PubMed, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science from January 1, 2020 to September 29, 2023. We included studies that evaluated the heterologous vaccination strategy on immunocompromised individuals through outcomes related to COVID-19 (levels of anti-SARS-CoV-2 spike protein IgG, neutralizing antibodies, symptomatic COVID-19 infection, hospitalization, and death) in comparison to homologous schemes. We also used random-effect models to produce pooled odds ratio estimates. Heterogeneity was investigated with I2 estimation.
Results:
Eighteen studies met the inclusion criteria for this systematic review. Fourteen of them provided quantitative data for inclusion in the meta-analysis on vaccine response, being four of them also included in the vaccine effectiveness meta-analysis. The vaccination strategies (heterologous vs homologous) showed no difference in the odds of developing anti-SARS-CoV-2 spike protein IgG (odds ratio 1.12 [95% Cl: 0.73–1.72]). Heterologous schemes also showed no difference in the production of neutralizing antibodies (odds ratio 1.48 [95% Cl: 0.72–3.05]) nor vaccine effectiveness in comparison to homologous schemes (odds ratio 1.52 [95% CI: 0.66–3.53]).
Conclusions:
Alternative heterologous COVID-19 vaccinations have shown equivalent antibody response rates and vaccine effectiveness to homologous schemes, potentially aiding global disparity of vaccine distribution.
We performed a systematic literature review and meta-analysis on the effectiveness of coronavirus disease 2019 (COVID-19) vaccination against post-COVID conditions (long COVID) in the pediatric population.
Design:
Systematic literature review/meta-analysis.
Methods:
We searched PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMBASE, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science from December 1, 2019, to August 14, 2023, for studies evaluating the COVID-19 vaccine effectiveness against post-COVID conditions among vaccinated individuals < 21 years old who received at least 1 dose of COVID-19 vaccine. A post-COVID condition was defined as any symptom that was present 4 or more weeks after COVID-19 infection. We calculated the pooled diagnostic odds ratio (DOR) (95% CI) for post-COVID conditions between vaccinated and unvaccinated individuals.
Results:
Eight studies with 23,995 individuals evaluated the effect of vaccination on post-COVID conditions, of which 5 observational studies were included in the meta-analysis. The prevalence of children who did not receive COVID-19 vaccines ranged from 65% to 97%. The pooled prevalence of post-COVID conditions was 21.3% among those unvaccinated and 20.3% among those vaccinated at least once. The pooled DOR for post-COVID conditions among individuals vaccinated with at least 1 dose and those vaccinated with 2 doses were 1.07 (95% CI, 0.77–1.49) and 0.82 (95% CI, 0.63–1.08), respectively.
Conclusions:
A significant proportion of children and adolescents were unvaccinated, and the prevalence of post-COVID conditions was higher than reported in adults. While vaccination did not appear protective, conclusions were limited by the lack of randomized trials and selection bias inherent in observational studies.
We performed a systematic literature review and meta-analysis on the effectiveness of coronavirus disease 2019 (COVID-19) vaccination against post-COVID conditions (long COVID) among fully vaccinated individuals.
Design:
Systematic literature review/meta-analysis.
Methods:
We searched PubMed, Cumulative Index to Nursing and Allied Health, EMBASE, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science from December 1, 2019, to June 2, 2023, for studies evaluating the COVID-19 vaccine effectiveness (VE) against post-COVID conditions among fully vaccinated individuals who received two doses of COVID-19 vaccine. A post-COVID condition was defined as any symptom that was present four or more weeks after COVID-19 infection. We calculated the pooled diagnostic odds ratio (DOR) (95% confidence interval) for post-COVID conditions between fully vaccinated and unvaccinated individuals. Vaccine effectiveness was estimated as 100% x (1-DOR).
Results:
Thirty-two studies with 775,931 individuals evaluated the effect of vaccination on post-COVID conditions, of which, twenty-four studies were included in the meta-analysis. The pooled DOR for post-COVID conditions among fully vaccinated individuals was 0.680 (95% CI: 0.523–0.885) with an estimated VE of 32.0% (11.5%–47.7%). Vaccine effectiveness was 36.9% (23.1%–48.2%) among those who received two doses of COVID-19 vaccine before COVID-19 infection and 68.7% (64.7%–72.2%) among those who received three doses before COVID-19 infection. The stratified analysis demonstrated no protection against post-COVID conditions among those who received COVID-19 vaccination after COVID-19 infection.
Conclusions:
Receiving a complete COVID-19 vaccination prior to contracting the virus resulted in a significant reduction in post-COVID conditions throughout the study period, including during the Omicron era. Vaccine effectiveness demonstrated an increase when supplementary doses were administered.
To compare the long-term vaccine effectiveness between those receiving viral vector [Oxford-AstraZeneca (ChAdOx1)] or inactivated viral (CoronaVac) primary series (2 doses) and those who received an mRNA booster (Pfizer/BioNTech) (the third dose) among healthcare workers (HCWs).
Methods:
We conducted a retrospective cohort study among HCWs (aged ≥18 years) in Brazil from January 2021 to July 2022. To assess the variation in the effectiveness of booster dose over time, we estimated the effectiveness rate by taking the log risk ratio as a function of time.
Results:
Of 14,532 HCWs, coronavirus disease 2019 (COVID-19) was confirmed in 56.3% of HCWs receiving 2 doses of CoronaVac vaccine versus 23.2% of HCWs receiving 2 doses of CoronaVac vaccine with mRNA booster (P < .001), and 37.1% of HCWs receiving 2 doses of ChAdOx1 vaccine versus 22.7% among HCWs receiving 2 doses of ChAdOx1 vaccine with mRNA booster (P < .001). The highest vaccine effectiveness with mRNA booster was observed 30 days after vaccination: 91% for the CoronaVac vaccine group and 97% for the ChAdOx1 vaccine group. Vacine effectiveness declined to 55% and 67%, respectively, at 180 days. Of 430 samples screened for mutations, 49.5% were SARS-CoV-2 delta variants and 34.2% were SARS-CoV-2 omicron variants.
Conclusions:
Heterologous COVID-19 vaccines were effective for up to 180 days in preventing COVID-19 in the SARS-CoV-2 delta and omicron variant eras, which suggests the need for a second booster.
To determine risk factors for the development of long coronavirus disease 2019 (COVID-19) in healthcare personnel (HCP).
Methods:
We conducted a case–control study among HCP who had confirmed symptomatic COVID-19 working in a Brazilian healthcare system between March 1, 2020, and July 15, 2022. Cases were defined as those having long COVID according to the Centers for Disease Control and Prevention definition. Controls were defined as HCP who had documented COVID-19 but did not develop long COVID. Multiple logistic regression was used to assess the association between exposure variables and long COVID during 180 days of follow-up.
Results:
Of 7,051 HCP diagnosed with COVID-19, 1,933 (27.4%) who developed long COVID were compared to 5,118 (72.6%) who did not. The majority of those with long COVID (51.8%) had 3 or more symptoms. Factors associated with the development of long COVID were female sex (OR, 1.21; 95% CI, 1.05–1.39), age (OR, 1.01; 95% CI, 1.00–1.02), and 2 or more SARS-CoV-2 infections (OR, 1.27; 95% CI, 1.07–1.50). Those infected with the SARS-CoV-2 δ (delta) variant (OR, 0.30; 95% CI, 0.17–0.50) or the SARS-CoV-2 o (omicron) variant (OR, 0.49; 95% CI, 0.30–0.78), and those receiving 4 COVID-19 vaccine doses prior to infection (OR, 0.05; 95% CI, 0.01–0.19) were significantly less likely to develop long COVID.
Conclusions:
Long COVID can be prevalent among HCP. Acquiring >1 SARS-CoV-2 infection was a major risk factor for long COVID, while maintenance of immunity via vaccination was highly protective.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.