We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To examine the relationship between unit-wide Clostridium difficile infection (CDI) susceptibility and inpatient mobility and to create contagion centrality as a new predictive measure of CDI.
Design:
Retrospective cohort study.
Methods:
A mobility network was constructed using 2 years of patient electronic health record data for a 739-bed hospital (n = 72,636 admissions). Network centrality measures were calculated for each hospital unit (node) providing clinical context for each in terms of patient transfers between units (ie, edges). Daily unit-wide CDI susceptibility scores were calculated using logistic regression and were compared to network centrality measures to determine the relationship between unit CDI susceptibility and patient mobility.
Results:
Closeness centrality was a statistically significant measure associated with unit susceptibility (P < .05), highlighting the importance of incoming patient mobility in CDI prevention at the unit level. Contagion centrality (CC) was calculated using inpatient transfer rates, unit-wide susceptibility of CDI, and current hospital CDI infections. The contagion centrality measure was statistically significant (P < .05) with our outcome of hospital-onset CDI cases, and it captured the additional opportunities for transmission associated with inpatient transfers. We have used this analysis to create easily interpretable clinical tools showing this relationship as well as the risk of hospital-onset CDI in real time, and these tools can be implemented in hospital EHR systems.
Conclusions:
Quantifying and visualizing the combination of inpatient transfers, unit-wide risk, and current infections help identify hospital units at risk of developing a CDI outbreak and, thus, provide clinicians and infection prevention staff with advanced warning and specific location data to inform prevention efforts.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.