We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Maintenance Message
Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene–nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient–genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countries.
The dominant lipids of seven species of abyssal holothurians (Oneirophanta mutabilis, Pseudostichopus villosus, Psychropotes longicauda, Deima validium, Parariza prouhoi, Amperima rosea and Molpadia blakei) have been examined in detail. Fatty acid compositions are qualitatively similar to those of shallow-water holothurians, but relatively higher amounts of unsaturated compounds in the deep sea animals are ascribed to an adaptation of the latter to maintain membrane fluidity at high pressure and low temperature. The sterol distributions of abyssal holothurians are complex, with mixtures of C26–C30 sterols being present in all of the animals. These are most likely to be dietary in origin; the holothurians substitute Δ5 with Δ7 unsaturation, via Δ5,7 or Δ0 intermediates. 14α-methylcholest-9(11)-enol, which is a common product of de novo biosynthesis in shallow-water holothurians is absent in all of the deep-water species. Furthermore, cholest-7-enol, the dominant product of de novo biosynthesis in shallow water animals, is a relatively minor component in all of the species, except A. rosea. This holothurian is also the only one that appears to assimilate 4α-methylsterols directly and contains high amounts of steryl sulphates. There are significant interspecies differences in the free sterol distributions which may reflect their different feeding strategies or niches.
Email your librarian or administrator to recommend adding this to your organisation's collection.