We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recently, the Health of the Nation Outcome Scales 65+ (HoNOS65+) were revised. Twenty-five experts from Australia and New Zealand completed an anonymous web-based survey about the content validity of the revised measure, the HoNOS Older Adults (HoNOS OA).
Results
All 12 HoNOS OA scales were rated by most (≥75%) experts as ‘important’ or ‘very important’ for determining overall clinical severity among older adults. Ratings of sensitivity to change, comprehensibility and comprehensiveness were more variable, but mostly positive. Experts’ comments provided possible explanations. For example, some experts suggested modifying or expanding the glossary examples for some scales (e.g. those measuring problems with relationships and problems with activities of daily living) to be more older adult-specific.
Clinical implications
Experts agreed that the HoNOS OA measures important constructs. Training may need to orient experienced raters to the rationale for some revisions. Further psychometric testing of the HoNOS OA is recommended.
Anhedonia is a core symptom of depression that predicts worse treatment outcomes. Dysfunction in neural reward circuits is thought to contribute to anhedonia. However, whether laboratory-based assessments of anhedonia and reward-related neural function translate to adolescents' subjective affective experiences in real-world contexts remains unclear.
Methods
We recruited a sample of adolescents (n = 82; ages 12–18; mean = 15.83) who varied in anhedonia and measured the relationships among clinician-rated and self-reported anhedonia, behaviorally assessed reward learning ability, neural response to monetary reward and loss (as assessed with functional magnetic resonance imaging), and repeated ecological momentary assessment (EMA) of positive affect (PA) and negative affect (NA) in daily life.
Results
Anhedonia was associated with lower mean PA and higher mean NA across the 5-day EMA period. Anhedonia was not related to impaired behavioral reward learning, but low PA was associated with reduced nucleus accumbens response during reward anticipation and reduced medial prefrontal cortex (mPFC) response during reward outcome. Greater mean NA was associated with increased mPFC response to loss outcome.
Conclusions
Traditional laboratory-based measures of anhedonia were associated with lower subjective PA and higher subjective NA in youths' daily lives. Lower subjective PA and higher subjective NA were associated with decreased reward-related striatal functioning. Higher NA was also related to increased mPFC activity to loss. Collectively, these findings demonstrate that laboratory-based measures of anhedonia translate to real-world contexts and that subjective ratings of PA and NA may be associated with neural response to reward and loss.
We describe here the early Spathian (Early Triassic) Paris Biota decapod fauna from the western USA basin. This fauna contains two taxa of Aegeridae (Dendobranchiata), namely Anisaeger longirostrus n. sp. and Aeger sp. that are the oldest known representatives of their family, thus extending its temporal range by 5 Myr back into the Early Triassic. This fauna also includes two representatives of Glypheida (Pleocyemata) with Litogaster turnbullensis and Pemphix krumenackeri n. sp., confirming for the former and extending for the latter the temporal ranges of their respective superfamilies back to the Early Triassic. Overall, the Paris Biota decapods are some of the oldest known representatives of Decapoda, filling in an important gap in the evolutionary history of this group, especially during the Triassic that marks the early diversification of this clade. Additionally, we compile and provide overviews for all known Triassic decapods, which leads to the revision of four species of Middle and Late Triassic Aegeridae, and to a revised family assignment of a Middle Triassic Glypheida. Based on this refined dataset, we also investigate decapod diversity throughout the Triassic. We show that the apparent increase in decapod taxonomic richness is probably driven by the heterogeneity of the fossil record and/or sampling effort, and that the decapod alpha diversity is actually relatively high as soon as the Early Triassic and remains rather stable throughout the Triassic.
Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 1017 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\alpha$. We find an approximately linear dependence of $L_\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\langle L_\alpha \rangle = ( ( 1154 \pm 121) - ( 0.81 \pm 0.14) \, ( \nu /{\rm MHz}) ) \,{\rm m}$ for frequencies ν ∈ [145 − 350] MHz.
We consider the time evolution in two spatial dimensions of a double vorticity layer consisting of two contiguous, infinite material fluid strips, each with uniform but generally differing vorticity, embedded in an otherwise infinite, irrotational, inviscid incompressible fluid. The potential application is to the wake dynamics formed by two boundary layers separating from a splitter plate. A thin-layer approximation is constructed where each layer thickness, measured normal to the common centre curve, is small in comparison with the local radius of curvature of the centre curve. The three-curve equations of contour dynamics that fully describe the double-layer dynamics are expanded in the small thickness parameter. At leading order, closed nonlinear initial-value evolution equations are obtained that describe the motion of the centre curve together with the time and spatial variation of each layer thickness. In the special case where the layer vorticities are equal, these equations reduce to the single-layer equation of Moore (Stud. Appl. Math., vol. 58, 1978, pp. 119–140). Analysis of the linear stability of the first-order equations to small-amplitude perturbations shows Kelvin–Helmholtz instability when the far-field fluid velocities on either side of the double layer are unequal. Equal velocities define a circulation-free double vorticity layer, for which solution of the initial-value problem using the Laplace transform reveals a double pole in transform space leading to linear algebraic growth in general, but there is a class of interesting initial conditions with no linear growth. This is shown to agree with the long-wavelength limit of the full linearized, three-curve stability equations.
The production of meltwater from glacier ice, which is exposed at the margins of land ice during the summer, is responsible for a large proportion of glacier mass loss. The rate of meltwater production from glacier ice is especially sensitive to its physical structure and chemical composition which combine to determine the albedo of glacier ice. However, the optical properties of near-surface glacier ice are not well known since most prior work has focused on laboratory-grown ice or deep cores. Here, we demonstrate a measurement technique based on diffuse propagation of nanosecond-duration laser pulses in near-surface glacier ice that enables the independent measurement of the scattering and absorption coefficients, allowing for a complete description of the processes governing radiative transfer. We employ a photon-counting detector to overcome the high losses associated with diffuse optics. The instrument is highly portable and rugged, making it optimally suited for deployment in remote regions. A set of measurements taken on Crook and Collier Glaciers, Oregon, serves as a demonstration of the technique. These measurements provide insight into both physical structure and composition of near-surface glacier ice and open new avenues for the analysis of light-absorbing impurities and remote sensing of the cryosphere.
Antenatal multiple micronutrient supplements (MMS) are a cost-effective intervention to reduce adverse pregnancy and birth outcomes. However, the current WHO recommendation on the use of antenatal MMS is conditional, partly due to concerns about the effect on neonatal mortality in a subgroup of studies comparing MMS with iron and folic acid (IFA) supplements containing 60 mg of Fe. We aimed to assess the effect of MMS v. IFA on neonatal mortality stratified by Fe dose in each supplement.
Methods:
We updated the neonatal mortality analysis of the 2020 WHO guidelines using the generic inverse variance method and applied the random effects model to calculate the effect estimates of MMS v. IFA on neonatal mortality in subgroups of trials (n 13) providing the same or different amounts of Fe, that is, MMS with 60 mg of Fe v. IFA with 60 mg of Fe; MMS with 30 mg of Fe v. IFA with 30 mg of Fe; MMS with 30 mg of Fe v. IFA with 60 mg of Fe; and MMS with 20 mg of Fe v. IFA with 60 mg of Fe.
Results:
There were no statistically significant differences in neonatal mortality between MMS and IFA within any of the subgroups of trials. Analysis of MMS with 30 mg v. IFA with 60 mg of Fe (7 trials, 14 114 participants), yielded a non-significant risk ratio of 1·12 (95 % CI 0·83 to 1·50).
Conclusion:
Neonatal mortality did not differ between MMS and IFA regardless of Fe dose in either supplement.
Animal and human data demonstrate independent relationships between fetal growth, hypothalamic-pituitary-adrenal axis function (HPA-A) and adult cardiometabolic outcomes. While the association between fetal growth and adult cardiometabolic outcomes is well-established, the role of the HPA-A in these relationships is unclear. This study aims to determine whether HPA-A function mediates or moderates this relationship. Approximately 2900 pregnant women were recruited between 1989-1991 in the Raine Study. Detailed anthropometric data was collected at birth (per cent optimal birthweight [POBW]). The Trier Social Stress Test was administered to the offspring (Generation 2; Gen2) at 18 years; HPA-A responses were determined (reactive responders [RR], anticipatory responders [AR] and non-responders [NR]). Cardiometabolic parameters (BMI, systolic BP [sBP] and LDL cholesterol) were measured at 20 years. Regression modelling demonstrated linear associations between POBW and BMI and sBP; quadratic associations were observed for LDL cholesterol. For every 10% increase in POBW, there was a 0.54 unit increase in BMI (standard error [SE] 0.15) and a 0.65 unit decrease in sBP (SE 0.34). The interaction between participant’s fetal growth and HPA-A phenotype was strongest for sBP in young adulthood. Interactions for BMI and LDL-C were non-significant. Decomposition of the total effect revealed no causal evidence of mediation or moderation.
In this randomized study, use of alcohol-based hand-rub disinfection significantly reduced bacterial bioburden of stethoscopes in routine clinical use. Prior cleaning of stethoscopes on the study day did not affect baseline contamination rates, which suggests that the efficacy of alcohol disinfection is short-lived and may need to be repeated between patients.
We explored the acceptability of a personalised proteomic risk intervention for patients at increased risk of type 2 diabetes and their healthcare providers, as well as their experience of participating in the delivery of proteomic-based risk feedback in UK primary care.
Background:
Advances in proteomics now allow the provision of personalised proteomic risk reports, with the intention of achieving positive behaviour change. This technology has the potential to encourage behaviour change in people at risk of developing type 2 diabetes.
Methods:
A semi-structured interview study was carried out with patients at risk of type 2 diabetes and their healthcare providers in primary care in the North of England. Participants (n = 17) and healthcare provider (n = 4) were interviewed either face to face or via telephone. Data were analysed using thematic analysis. This qualitative study was nested within a single-arm pilot trial and undertaken in primary care.
Findings:
The personalised proteomic risk intervention was generally acceptable and the experience was positive. The personalised nature of the report was welcomed, especially the way it provided a holistic approach to risks of organ damage and lifestyle factors. Insights were provided as to how this may change behaviour. Some participants reported difficulties in understanding the format of the presentation of risk and expressed surprise at receiving risk estimates for conditions other than type 2 diabetes. Personalised proteomic risk interventions have the potential to provide holistic and comprehensive assessments of risk factors and lifestyle factors which may lead to positive behaviour change.
Herbicide-resistant (HR) crops are widely grown throughout the United States and Canada. These crop-trait technologies can enhance weed management and therefore can be an important component of integrated weed management (IWM) programs. Concomitantly, evolution of HR weed populations has become ubiquitous in agricultural areas where HR crops are grown. Nevertheless, crop cultivars with new or combined (stacked) HR traits continue to be developed and commercialized. This review, based on a symposium held at the Western Society of Weed Science annual meeting in 2021, examines the impact of HR crops on HR weed management in the U.S. Great Plains, U.S. Pacific Northwest, and the Canadian Prairies over the past 25 yr and their past and future contributions to IWM. We also provide an industry perspective on the future of HR crop development and the role of HR crops in resistance management. Expanded options for HR traits in both major and minor crops are expected. With proper stewardship, HR crops can reduce herbicide-use intensity and help reduce selection pressure on weed populations. However, their proper deployment in cropping systems must be carefully planned by considering a diverse crop rotation sequence with multiple HR and non-HR crops and maximizing crop competition to effectively manage HR weed populations. Based on past experiences in the cultivation of HR crops and associated herbicide use in the western United States and Canada, HR crops have been important determinants of both the selection and management of HR weeds.
We present the most sensitive and detailed view of the neutral hydrogen (
${\rm H\small I}$
) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal
${\rm H\small I}$
in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (
$1.6\,\mathrm{mJy\ beam}^{-1}$
)
$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$
spectral channel with an angular resolution of
$30^{\prime\prime}$
(
${\sim}10\,\mathrm{pc}$
). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire
${\sim}25\,\mathrm{deg}^2$
field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes
${\rm H\small I}$
test observations.
Co-regulation of physiological arousal within the caregiver–child dyad precedes later self-regulation within the individual. Despite the importance of unimpaired self-regulatory development for later adjustment outcomes, little is understood about how early co-regulatory processes can become dysregulated during early life. Aspects of caregiver behavior, such as patterns of anxious speech, may be one factor influencing infant arousal dysregulation. To address this, we made day-long, naturalistic biobehavioral recordings in home settings in caregiver–infant dyads using wearable autonomic devices and miniature microphones. We examined the association between arousal, vocalization intensity, and caregiver anxiety. We found that moments of high physiological arousal in infants were more likely to be accompanied by high caregiver arousal when caregivers had high self-reported trait anxiety. Anxious caregivers were also more likely to vocalize intensely at states of high arousal and produce intense vocalizations that occurred in clusters. High-intensity vocalizations were associated with more sustained increases in autonomic arousal for both anxious caregivers and their infants. Findings indicate that caregiver vocal behavior differs in anxious parents, cooccurs with dyadic arousal dysregulation, and could contribute to physiological arousal transmission. Implications for caregiver vocalization as an intervention target are discussed.
Cross-species evidence suggests that the ability to exert control over a stressor is a key dimension of stress exposure that may sensitize frontostriatal-amygdala circuitry to promote more adaptive responses to subsequent stressors. The present study examined neural correlates of stressor controllability in young adults. Participants (N = 56; Mage = 23.74, range = 18–30 years) completed either the controllable or uncontrollable stress condition of the first of two novel stressor controllability tasks during functional magnetic resonance imaging (fMRI) acquisition. Participants in the uncontrollable stress condition were yoked to age- and sex-matched participants in the controllable stress condition. All participants were subsequently exposed to uncontrollable stress in the second task, which is the focus of fMRI analyses reported here. A whole-brain searchlight classification analysis revealed that patterns of activity in the right dorsal anterior insula (dAI) during subsequent exposure to uncontrollable stress could be used to classify participants' initial exposure to either controllable or uncontrollable stress with a peak of 73% accuracy. Previous experience of exerting control over a stressor may change the computations performed within the right dAI during subsequent stress exposure, shedding further light on the neural underpinnings of stressor controllability.
To quantify patient eligibility for cochlear implantation following National Institute for Health and Care Excellence 2019 guidelines (TA566) over five years at our institution, and identify factors influencing patients’ decisions surrounding cochlear implantation referral.
Methods
A multi-perspective service evaluation was conducted at a district general hospital, comprising cochlear implantation eligible patients. The main outcome measures were: eligibility numbers for 2014–2019, comparing application of TA566 versus 2009 (TA166) guidelines; and patient interview transcripts and questionnaires.
Results
There was a 259 per cent average increase in cochlear implantation eligibility from 2014 to 2019. Most patients’ thresholds were 80 dB HL or more at 3 kHz and 4 kHz. There are several cochlear implantation barriers, including patient-centred issues (e.g. health-related anxieties, implantation misperceptions) and external barriers (difficulty getting to regional implant centres). Motivating factors for cochlear implantation include improved quality of life and access to local cochlear implantation services.
Conclusion
The TA566 guidelines have increased cochlear implantation eligibility, putting pressure on cochlear implantation centres and referring hospitals. Current referral systems have external and patient-centred implantation barriers. British cochlear implantation delivery may need rethinking to meet increasing populational demands and improve accessibility for those most vulnerable to these barriers.
Obesity increases the risk of post-operative arrhythmias in adults undergoing cardiac surgery, but little is known regarding the impact of obesity on post-operative arrhythmias after CHD surgery.
Methods:
Patients undergoing CHD surgery from 2007 to 2019 were prospectively enrolled in the parent study. Telemetry was assessed daily, with documentation of all arrhythmias. Patients aged 2–20 years were categorised by body mass index percentile for age and sex (underweight <5, normal 5–85, overweight 85–95, and obese >95). Patients aged >20 years were categorised using absolute body mass index. We investigated the impact of body mass index category on arrhythmias using univariate and multivariate analysis.
Results:
There were 1250 operative cases: 12% underweight, 65% normal weight, 12% overweight, and 11% obese. Post-operative arrhythmias were observed in 38%. Body mass index was significantly higher in those with arrhythmias (18.8 versus 17.8, p = 0.003). There was a linear relationship between body mass index category and incidence of arrhythmias: underweight 33%, normal 38%, overweight 42%, and obese 45% (p = 0.017 for trend). In multivariate analysis, body mass index category was independently associated with post-operative arrhythmias (p = 0.021), with odds ratio 1.64 in obese patients as compared to normal-weight patients (p = 0.036). In addition, aortic cross-clamp time (OR 1.007, p = 0.002) and maximal vasoactive–inotropic score in the first 48 hours (OR 1.03, p = 0.04) were associated with post-operative arrhythmias.
Conclusion:
Body mass index is independently associated with incidence of post-operative arrhythmias in children after CHD surgery.