The enthalpies of formation of two rare-earth silicates (Y2SiO5 and Yb2SiO5) and a N-containing rare-earth silicate Y10(SiO4)6N2 have been determined using high-temperature drop solution calorimetry. Alkali borate (52 wt% LiBO2·48 wt% NaBO2) solvent was used at 800 °C, and oxygen gas was bubbled through the melt. The nitrogen-containing silicate was oxidized during dissolution. The standard enthalpies of formation are for Y2SiO5, Yb2SiO5, and Y10(SiO4)6N2, respectively, –22868.54 ± 5.34, –22774.75 ± 8.21, and –14145.20 ± 16.48 kJ/mol from elements, and –52.53 ± 4.83, –49.45 6 ± 8.35, and –94.53 ± 11.66 kJ/mol from oxides (Y2O3 or Yb2O3, SiO2) and nitride (Si3N4). The silicates and N-containing silicate are energetically stable with respect to binary oxides and Si3N4, but the N-containing silicate may be metastable with respect to assemblages containing Y2SiO5, Si3N4, and SiO2. A linear relationship was found between the enthalpy of formation of a series of M2SiO5 silicates from binary oxides and the ionic potential (z/r) of the metal cation.