We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The high-altitude landscape of western Tibet is one of the most extreme environments in which humans have managed to introduce crop cultivation. To date, only sparse palaeoeconomic data have been reported from this region. The authors present archaeobotanical evidence from five sites (dating from the late first millennium BC and the early first millennium AD) located in the cold-arid landscape of western Tibet. The data indicate that barley was widely grown in this region by c. 400 BC but probably fulfilled differing roles within local ecological constraints on cultivation. Additionally, larger sites are characterised by more diverse crop assemblages than smaller sites, suggesting a role for social diversity in the development of high-altitude agriculture.
This study evaluated the association between inflammatory diets as measured by the dietary inflammatory index (DII), and inflammation biomarkers, and the development of preeclampsia among the Chinese population. We followed the reporting guidelines of the STROBE statement for observational studies. A total of 466 preeclampsia cases aged over 18 years were recruited between March 2016 and June 2019, and 466 healthy controls were 1:1 ratio matched by age (± 3 years), week of gestation (± 1 week), and gestational diabetes mellitus. The energy-adjusted DII (E-DII) was computed based on dietary intake assessed using a 79-item semiquantitative food frequency questionnaire (FFQ). Inflammatory biomarkers were analyzed by ELISA kits. The mean E-DII scores were -0.65 ± 1.58 for cases and -1.19 ± 1.47 for controls (P value <0.001). E-DII scores positively correlated with IFN-γ (rs = 0.194, P value = 0.001) and IL-4 (rs = 0.135, P value = 0.021). After multivariable adjustment, E-DII scores were positively related to preeclampsia risk (P trend <0.001). The highest tertile of E-DII was 2.18 times the lowest tertiles (95% CI = 1.52, 3.13). The odds of preeclampsia increased by 30% (95% CI= 18%, 43%, P value <0.001) for each E-DII score increase. The preeclampsia risk was positively associated with IL-2 (OR = 1.07, 95% CI = 1.03, 1.11), IL-4 (OR = 1.26, 95% CI = 1.03, 1.54) and TGF-β (OR = 1.17, 95% CI = 1.06, 1.29). Therefore, proinflammatory diets, corresponding to higher IL-2, IL-4 and TGF-β levels, were associated with increased preeclampsia risk.
We consider meromorphic solutions of functional-differential equations
\[ f^{(k)}(z)=a(f^{n}\circ g)(z)+bf(z)+c, \]
where $n,\,~k$ are two positive integers. Firstly, using an elementary method, we describe the forms of $f$ and $g$ when $f$ is rational and $a(\neq 0)$, $b$, $c$ are constants. In addition, by employing Nevanlinna theory, we show that $g$ must be linear when $f$ is transcendental and $a(\neq 0)$, $b$, $c$ are polynomials in $\mathbb {C}$.
We report the crystal structure of allanite-(Ce), with composition (Ca1.0REE0.9□0.1)Σ2.0(Al1.46Fe3+0.52Fe2+0.76Mg0.12Ti0.15)Σ3.01Si3O12(OH) from the Xinfeng rare earth element (REE)-bearing granite in Guangdong Province, China. It has the unit cell a = 8.9550(4) Å, b = 5.77875(16) Å, c = 10.2053(4) Å, β = 114.929(5)° and Z = 2 in space group P21/m and is characterised by site splitting at M3 into M3a and M3b, at a distance of 0.38(3) Å, which are occupied partially by Fe0.764Mg0.12 and Ti0.15, respectively. The structure was determined by single-crystal X-ray diffraction and refined with anisotropic full-matrix least-squares refinement on F2 to R1 = 2.82%, wR2 = 7.77% for 1856 independent reflections (8772 collected reflections). However, M3 splitting is not present in either ferriallanite-(Ce) or epidote, in which M3 is almost fully occupied either by Fe2+ or by Fe3+. Comparisons of bond lengths and volumes in cation polyhedra among allanite-(Ce), ferriallanite-(Ce) and epidote tend to indicate that the essential factor that facilitates site splitting of M3 in allanite-(Ce) is heterovalent substitution and occupation of a crystallographic site between Fe2+(Mg2+/Mn2+)–Al3+(Ti4+), a common phenomenon in minerals, such as the plagioclase series. Fine structure analysis of the M3 split model revealed that deformation of A2 is related closely to distorted M3, which is consistent with Fe2+ incorporation following REE substitution.
Metabolically healthy obesity (MHO) might be an alternative valuable target in obesity treatment. We aimed to assess whether alternative Mediterranean (aMED) diet and Dietary Approaches to Stop Hypertension (DASH) diet were favourably associated with obesity and MHO phenotype in a Chinese multi-ethnic population. We conducted this cross-sectional analysis using the baseline data of the China Multi-Ethnic Cohort study that enrolled 99 556 participants from seven diverse ethnic groups. Participants with self-reported cardiometabolic diseases were excluded to eliminate possible reverse causality. Marginal structural logistic models were used to estimate the associations, with confounders determined by directed acyclic graph (DAG). Among 65 699 included participants, 11·2 % were with obesity. MHO phenotype was present in 5·7 % of total population and 52·7 % of population with obesity. Compared with the lowest quintile, the highest quintile of DASH diet score had 23 % decreased odds of obesity (OR = 0·77, 95 % CI 0·71, 0·83, Ptrend < 0·001) and 27 % increased odds of MHO (OR = 1·27, 95 % CI 1·10, 1·48, Ptrend = 0·001) in population with obesity. However, aMED diet showed no obvious favourable associations. Further adjusting for BMI did not change the associations between diet scores and MHO. Results were robust to various sensitivity analyses. In conclusion, DASH diet rather than aMED diet is associated with reduced risk of obesity and presents BMI-independent metabolic benefits in this large population-based study. Recommendation for adhering to DASH diet may benefit the prevention of obesity and related metabolic disorders in Chinese population.
During the first postnatal week in rodents, cholinergic retinal waves initiate in starburst amacrine cells (SACs), propagating to retinal ganglion cells (RGCs) and visual centers, essential for visual circuit refinement. By modulating exocytosis in SACs, dynamic changes in the protein kinase A (PKA) activity can regulate the spatiotemporal patterns of cholinergic waves. Previously, cysteine string protein-α (CSPα) is found to interact with the core exocytotic machinery by PKA-mediated phosphorylation at serine 10 (S10). However, whether PKA-mediated CSPα phosphorylation may regulate cholinergic waves via SACs remains unknown. Here, we examined how CSPα phosphorylation in SACs regulates cholinergic waves. First, we identified that CSPα1 is the major isoform in developing rat SACs and the inner plexiform layer during the first postnatal week. Using SAC-specific expression, we found that the CSPα1-PKA-phosphodeficient mutant (CSP-S10A) decreased wave frequency, but did not alter the wave spatial correlation compared to control, wild-type CSPα1 (CSP-WT), or two PKA-phosphomimetic mutants (CSP-S10D and CSP-S10E). These suggest that CSPα-S10 phosphodeficiency in SACs dampens the frequency of cholinergic waves. Moreover, the level of phospho-PKA substrates was significantly reduced in SACs overexpressing CSP-S10A compared to control or CSP-WT, suggesting that the dampened wave frequency is correlated with the decreased PKA activity. Further, compared to control or CSP-WT, CSP-S10A in SACs reduced the periodicity of wave-associated postsynaptic currents (PSCs) in neighboring RGCs, suggesting that these RGCs received the weakened synaptic inputs from SACs overexpressing CSP-S10A. Finally, CSP-S10A in SACs decreased the PSC amplitude and the slope to peak PSC compared to control or CSP-WT, suggesting that CSPα-S10 phosphodeficiency may dampen the speed of the SAC-RGC transmission. Thus, via PKA-mediated phosphorylation, CSPα in SACs may facilitate the SAC-RGC transmission, contributing to the robust frequency of cholinergic waves.
The Lochkovian (Lower Devonian) conodont biostratigraphy in China is poorly known, and conodont-based subdivision schemes for the Lochkovian in peri-Gondwana (the Spanish Central Pyrenees, the Prague Synform, Sardinia, and the Carnic Alps) have not been tested in China. Therefore, we studied conodonts from the lower part (Bed 9 to Bed 13) of the Shanjiang Formation at the Alengchu section of Lijiang, western Yunnan to test the application of established subdivision schemes. The conodont fauna is assignable to 12 taxa belonging to eight genera (Ancyrodelloides, Flajsella, Lanea, Wurmiella, Zieglerodina, Caudicriodus, Pelekysgnathus, and Pseudooneotodus), and enables recognition of two chronostratigraphical intervals from the lower part of the Shanjiang Formation. The interval ranging from the uppermost part of Bed 9 to the upper part of Bed 10 belongs to the lower Lochkovian; whereas an interval covering the uppermost part of Bed 11 to the upper part of Bed 13 is correlated with the upper half of the middle Lochkovian. The Silurian-Devonian boundary is probably located within Bed 9, in the basal part of the Shanjiang Formation. However, the scarcity of specimens precludes definitive identification of bases of the lower, middle, and upper Lochkovian as well as other conodont zones recognized in peri-Gondwana.
To investigate the association between the Metabolic Score for Visceral Fat (METS-VF) and risk of type 2 diabetes mellitus (T2DM) and compare the predictive value of the METS-VF for T2DM incidence with other obesity indices in Chinese people. A total of 12 237 non-T2DM participants aged over 18 years from the Rural Chinese Cohort Study of 2007–2008 were included at baseline and followed up during 2013–2014. The cox proportional hazards regression was used to calculate hazard ratios (HR) and 95 % CI for the association between baseline METS-VF and T2DM risk. Restricted cubic splines were used to model the association between METS-VF and T2DM risk. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the ability of METS-VF to predict T2DM incidence. During a median follow-up of 6·01 (95 % CI 5·09, 6·06) years, 837 cases developed T2DM. After adjusting for potential confounding factors, the adjusted HR for the highest v. lowest METS-VF quartile was 5·97 (95 % CI 4·28, 8·32), with a per 1-sd increase in METS-VF positively associated with T2DM risk. Positive associations were also found in the sensitivity and subgroup analyses, respectively. A significant nonlinear dose–response association was observed between METS-VF and T2DM risk for all participants (Pnonlinearity = 0·0347). Finally, the AUC value of METS-VF for predicting T2DM was largest among six indices. The METS-VF may be a reliable and applicable predictor of T2DM incidence in Chinese people regardless of sex, age or BMI.
A few former studies suggested that there are partial overlaps in abnormal brain structure and cognitive function between hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear.
Methods:
Twenty-one HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ.
Results:
Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL), and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG, and left paracentral lobule, but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MATRICS consensus cognitive battery (MCCB) in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients.
Conclusion:
Our results suggested that the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula are closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.
Salicylic acid (SA), a phytohormone, has been considered to be a key regulator mediating plant defence against pathogens. It is still vague how SA activates plant defence against herbivores such as chewing and sucking pests. Here, we used an aphid-susceptible wheat variety to investigate Sitobion avenae response to SA-induced wheat plants, and the effects of exogenous SA on some defence enzymes and phenolics in the plant immune system. In SA-treated wheat seedlings, intrinsic rate of natural increase (rm), fecundity and apterous rate of S. avenae were 0.25, 31.4 nymphs/female and 64.4%, respectively, and significantly lower than that in the controls (P < 0.05). Moreover, the increased activities of phenylalanine-ammonia-lyase, polyphenol oxidase (PPO) and peroxidase in the SA-induced seedlings obviously depended on the sampling time, whereas activities of catalase and 4-coumarate:CoA ligase were suppressed significantly at 24, 48 and 72 h in comparison with the control. Dynamic levels of p-coumaric acid at 96 h, caffeic acid at 24 and 72 h and chlorogenic acid at 24, 48 and 96 h in wheat plants were significantly upregulated by exogenous SA application. Nevertheless, only caffeic acid content was positively correlated with PPO activity in SA-treated wheat seedlings (P = 0.031). These findings indicate that exogenous SA significantly enhanced the defence of aphid-susceptible wheat variety against aphids by regulating the plant immune system, and may prove a potential application of SA in aphid control.
Over recent decades, Chinese giant salamanders Andrias spp. have declined dramatically across much of their range. Overexploitation and habitat degradation have been widely cited as the cause of these declines. To investigate the relative contribution of each of these factors in driving the declines, we carried out standardized ecological and questionnaire surveys at 98 sites across the range of giant salamanders in China. We did not find any statistically significant differences between water parameters (temperature, dissolved oxygen, ammonia, nitrite, nitrate, salinity, alkalinity, hardness and flow rate) recorded at sites where giant salamanders were detected by survey teams and/or had been recently seen by local respondents, and sites where they were not detected and/or from which they had recently been extirpated. Additionally, we found direct and indirect evidence that the extraction of giant salamanders from the wild is ongoing, including within protected areas. Our results support the hypothesis that the decline of giant salamanders across China has been primarily driven by overexploitation. Data on water parameters may be informative for the establishment of conservation breeding programmes, an initiative recommended for the conservation of these species.
More than 50% patients with major depressive disorder (MDD) have severe functional impairment. The restoration of patient functioning is a critical therapeutic goal among patients with MDD. We conducted a systematic review and network meta-analysis to evaluate the efficacy of pharmacological treatments on self-rated functional outcomes using the Sheehan Disability Scale in adults with MDD in randomized clinical trials.
Methods
PubMed, EMBASE, PsycINFO, Cochrane Library, and ClinicalTrials.gov were searched from inception to December 10, 2019. Summary statistics are reported as weighted mean differences with 95% confidence intervals. Interventions were ranked using the surface under the cumulative ranking probabilities.
Results
We included 42 randomized controlled trials (RCTs) (n = 18 998) evaluating the efficacy of 13 different pharmacological treatments on functional outcomes, as measured by the Sheehan Disability Scale (SDS). Duloxetine was the most effective pharmacological agent on functional outcomes, followed by (ranked by efficacy): paroxetine, levomilnacipran, venlafaxine, quetiapine, desvenlafaxine, agomelatine, escitalopram, amitriptyline, bupropion, sertraline, vortioxetine, and fluoxetine. Serotonin and norepinephrine reuptake inhibitors were more effective than other drug classes. Additionally, the comparison-adjusted funnel plot suggested the publication bias between small and large studies was relatively low.
Conclusions
Our results indicate that there may be differences across antidepressant agents and classes with respect to self-reported functional outcomes. Validation and replication of these findings in large-scale RCTs are warranted. Our research results will be clinically useful for guiding psychiatrists in treating patients with MDD and functional impairment. PROSPERO registration number CRD42018116663.
Somatic cell nuclear transfer (SCNT) holds vast potential in agriculture. However, its applications are still limited by its low efficiency. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as an epigenetic barrier for this. Histone demethylase KDM4D could regulate the level of H3K9me3. However, its effects on buffalo SCNT embryos are still unclear. Thus, we performed this study to explore the effects and underlying mechanism of KDM4D on buffalo SCNT embryos. The results revealed that compared with the IVF embryos, the expression level of KDM4D in SCNT embryos was significantly lower at 8- and 16-cell stage, while the level of H3K9me3 in SCNT embryos was significantly higher at 2-cell, 8-cell, and blastocyst stage. Microinjection of KDM4D mRNA could promote the developmental ability of buffalo SCNT embryos. Furthermore, the expression level of ZGA-related genes such as ZSCAN5B, SNAI1, eIF-3a, and TRC at the 8-cell stage was significantly increased. Meanwhile, the pluripotency-related genes like POU5F1, SOX2, and NANOG were also significantly promoted at the blastocyst stage. The results were reversed after KDM4D was inhibited. Altogether, these results revealed that KDM4D could correct the H3K9me3 level, increase the expression level of ZGA and pluripotency-related genes, and finally, promote the developmental competence of buffalo SCNT embryos.
The aim of this study was to investigate the association between daily Se intake and postpartum weight retention (PPWR) among Chinese lactating women, and the impact of their Se nutritional status on infants’ physical development. Se contents in breast milk and plasma collected from 264 lactating Chinese women at the 42nd day postpartum were analysed with inductively coupled plasma MS. Daily Se intake was calculated based on plasma Se concentration. The dietary data of 24-h records on three consecutive days were collected. Infant growth status was evaluated with WHO standards by Z-scores. Linear regression analyses and multinomial logistic regression were conducted to examine the impact of Se disequilibrium (including other factors) on PPWR and growth of infants, respectively. The results indicated that: (1) the daily Se intake of the subjects was negatively associated with their PPWR (B = −0·002, 95 % CI − 0·003, 0·000, P = 0·039); (2) both insufficient Se daily intake (B = −0·001, OR 0·999, 95 % CI 0·998, 1·000, P = 0·014) and low level of Se in milk (B = −0·025, OR 0·975, 95 % CI 0·951, 0·999, P = 0·021) had potential associations with their infants’ wasting, and low level of Se in milk (B = −0·159, OR 0·853, 95 % CI 0·743, 0·980, P = 0·024) had a significant association with their infants’ overweight. In conclusion, the insufficient Se nutritional status of lactating Chinese women was first found as one possible influencing factor of their PPWR as well as low physical development of their offspring.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
To reveal the thermal shock resistance of double-layer thermal barrier coatings (TBCs), two types of TBCs were prepared via atmospheric plasma spraying, i.e., Gd2Zr2O7/yttria-stabilized zirconia (GZ/YSZ) TBCs and La2Zr2O7 (LZ)/YSZ TBCs, respectively. Subsequently, thermal cycling tests of the two TBCs were conducted at 1100 °C and their thermal shock resistance and failure mechanism were comparatively investigated through experiments and the finite element method. The results showed that the thermal shock failure of the two TBCs occurred inside the top ceramic coating. However, the GZ/YSZ TBCs had longer thermal cycling life. It was the mechanical properties of the top ceramic coating, and the thermal stresses arising from the thermal mismatch between the top ceramic coating and the substrate that determined the thermal cycling life of the two TBCs together. Compared with the LZ layer in the LZ/YSZ TBCs, the GZ layer in the GZ/YSZ TBCs had smaller elastic modulus, larger fracture toughness, and smaller thermal stresses, which led to the higher crack propagation resistance and less spallation tendency of the GZ/YSZ TBCs. Therefore, the GZ/YSZ TBCs exhibited superior thermal shock resistance to the LZ/YSZ TBCs.
The structural changes recent-onset posttraumatic stress disorder (PTSD) subjects were rarely investigated. This study was to compare temporal and causal relationships of structural changes in recent-onset PTSD with trauma-exposed control (TEC) subjects and non-TEC subjects.
Methods
T1-weighted magnetic resonance images of 27 PTSD, 33 TEC and 30 age- and sex-matched healthy control (HC) subjects were studied. The causal network of structural covariance was used to evaluate the causal relationships of structural changes in PTSD patients.
Results
Volumes of bilateral hippocampal and left lingual gyrus were significantly smaller in PTSD patients and TEC subjects than HC subjects. As symptom scores increase, reduction in gray matter volume began in the hippocampus and progressed to the frontal lobe, then to the temporal and occipital cortices (p < 0.05, false discovery rate corrected). The hippocampus might be the primary hub of the directional network and demonstrated positive causal effects on the frontal, temporal and occipital regions (p < 0.05, false discovery rate corrected). The frontal regions, which were identified to be transitional points, projected causal effects to the occipital lobe and temporal regions and received causal effects from the hippocampus (p < 0.05, false discovery rate corrected).
Conclusions
The results offer evidence of localized abnormalities in the bilateral hippocampus and remote abnormalities in multiple temporal and frontal regions in typhoon-exposed PTSD patients.
Birth weight influences not only brain development, but also mental health outcomes, including depression, but the underlying mechanism is unclear.
Methods.
The phenotypic data of 12,872–91,009 participants (59.18–63.38% women) from UK Biobank were included to test the associations between the birth weight, depression, and brain volumes through the linear and logistic regression models. As birth weight is highly heritable, the polygenic risk scores (PRSs) of birth weight were calculated from the UK Biobank cohort (154,539 participants, 56.90% women) to estimate the effect of birth weight-related genetic variation on the development of depression and brain volumes. Finally, the mediation analyses of step approach and mediation analysis were used to estimate the role of brain volumes in the association between birth weight and depression. All analyses were conducted sex stratified to assess sex-specific role in the associations.
Result.
We observed associations between birth weight and depression (odds ratio [OR] = 0.968, 95% confidence interval [CI] = 0.957–0.979, p = 2.29 × 10−6). Positive associations were observed between birth weight and brain volumes, such as gray matter (B = 0.131, p = 3.51 × 10−74) and white matter (B = 0.129, p = 1.67 × 10−74). Depression was also associated with brain volume, such as left thalamus (OR = 0.891, 95% CI = 0.850–0.933, p = 4.46 × 10−5) and right thalamus (OR = 0.884, 95% CI = 0.841–0.928, p = 2.67 × 10−5). Additionally, significant mediation effects of brain volume were found for the associations between birth weight and depression through steps approach and mediation analysis, such as gray matter (B = –0.220, p = 0.020) and right thalamus (B = –0.207, p = 0.014).
Conclusions.
Our results showed the associations among birth weight, depression, and brain volumes, and the mediation effect of brain volumes also provide evidence for the sex-specific of associations.
The aim of this paper is twofold. The first aim is to describe the entire solutions of the partial differential equation (PDE) $u_{z_1}^2+2Bu_{z_1}u_{z_2}+u_{z_2}^2=e^g$, where B is a constant and g is a polynomial or an entire function in $\mathbb {C}^2$. The second aim is to consider the entire solutions of another PDE, which is a generalization of the well-known PDE of tubular surfaces.
This paper presents a soft robot which can imitate the crawling locomotion of an earthworm. Locomotion of the robot can be achieved by expanding and contracting the body that is made of flexible material. A link of the earthworm-like robot is combined with three modules, and a multi-cavity earthworm-like soft robot is combined with multiple links. The multiple links of the earthworm-like soft robot are fabricated by silicone in the three-dimensional printed customized molds. Experiments on a single module, two-links, and three-links show that the soft robot can move and bend on condition of modules extension and contraction in a specified gait. The development of the earthworm-like soft robot shows a great prospect in many complicated environments such as pipeline detection.