We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
High prevalence of long COVID symptoms has emerged as a significant public health concern. This study investigated the associations between three doses of COVID-19 vaccines and the presence of any and ≥3 types of long COVID symptoms among people with a history of SARS-CoV-2 infection in Hong Kong, China. This is a secondary analysis of a cross-sectional online survey among Hong Kong adult residents conducted between June and August 2022. This analysis was based on a sub-sample of 1,542 participants with confirmed SARS-CoV-2 infection during the fifth wave of COVID-19 outbreak in Hong Kong (December 2021 to April 2022). Among the participants, 40.9% and 16.1% self-reported having any and ≥3 types of long COVID symptoms, respectively. After adjusting for significant variables related to sociodemographic characteristics, health conditions and lifestyles, and SARS-CoV-2 infection, receiving at least three doses of COVID-19 vaccines was associated with lower odds of reporting any long COVID symptoms comparing to receiving two doses (adjusted odds ratio [AOR]: 0.69, 95% CI: 0.54, 0.87, P = .002). Three doses of inactivated and mRNA vaccines had similar protective effects against long COVID symptoms. It is important to strengthen the coverage of COVID-19 vaccination booster doses, even in the post-pandemic era.
The effects of the evolution of vortices on the aeroacoustics generated by a hovering wing are numerically investigated by using a hybrid method of an immersed boundary–finite difference method for the three-dimensional incompressible flows and a simplified model based on the Ffowcs Williams-Hawkings acoustic analogy. A low-aspect-ratio ($AR=1.5$) rectangular wing at low Reynolds ($Re=1000$) and Mach ($M=0.04$) numbers is investigated. Based on the simplified model, the far-field acoustics is shown to be dominated by the time derivative of the pressure on the wing surface. Results show that vortical structure evolution in the flow fields, which is described by the divergence of the convection term of the incompressible Navier–Stokes equations in a body-fixed reference frame, determines the time derivative of the surface pressure and effectively the far-field acoustics. It dominates over the centrifugal acceleration and Coriolis acceleration terms in determining the time derivative of the surface pressure. The position of the vortex is also found to affect the time derivative of the surface pressure. A scaling analysis reveals that the vortex acoustic source is scaled with the cube of the flapping frequency.
Timing of food intake is an emerging aspect of nutrition; however, there is a lack of research accurately assessing food timing in the context of the circadian system. The study aimed to investigate the relation between food timing relative to clock time and endogenous circadian timing with adiposity and further explore sex differences in these associations among 151 young adults aged 18–25 years. Participants wore wrist actigraphy and documented sleep and food schedules in real time for 7 consecutive days. Circadian timing was determined by dim-light melatonin onset (DLMO). The duration between last eating occasion and DLMO (last EO-DLMO) was used to calculate the circadian timing of food intake. Adiposity was assessed using bioelectrical impedance analysis. Of the 151 participants, 133 were included in the statistical analysis finally. The results demonstrated that associations of adiposity with food timing relative to circadian timing rather than clock time among young adults living in real-world settings. Sex-stratified analyses revealed that associations between last EO-DLMO and adiposity were significant in females but not males. For females, each hour increase in last EO-DLMO was associated with higher BMI by 0·51 kg/m2 (P = 0·01), higher percent body fat by 1·05 % (P = 0·007), higher fat mass by 0·99 kg (P = 0·01) and higher visceral fat area by 4·75 cm2 (P = 0·02), whereas non-significant associations were present among males. The findings highlight the importance of considering the timing of food intake relative to endogenous circadian timing instead of only as clock time.
Early-season rice often faces limited market competition due to its lower quality, which diminishes farmers' incentives to cultivate it. Developing specific early-season rice varieties tailored for rice noodle production represents a practical solution to this challenge. However, limited information exists on the varietal differences regarding the yield and quality of noodles produced from early-season rice and their determinants. To address this gap, this study conducted field experiments with 15 early-season rice varieties during 2022 and 2023. The results revealed significant varietal differences in rice noodle yield per unit of land area and cooking and eating (texture) qualities of the noodles, with the variety Zhuliangyou 4024 standing out for its ability to produce rice noodles that are both high yielding and of superior cooking and eating qualities. Correlation analysis showed the yield of rice noodles per unit of land area was significantly related to grain yield per unit of land, which in turn was linked to grain weight. Additionally, the analysis showed the cooking loss rate of rice noodles and their chewiness were significantly correlated with both amylose and amylopectin content, whereas the hardness, springiness, and resilience of cooked rice noodles were significantly correlated only with amylose content. However, partial correlation analysis indicated that all these quality traits were significantly correlated solely with amylose content when controlling the influence of other chemical properties. These findings indicate that selecting early-season rice varieties with high grain weight and high amylose content can lead to the production of high-yield and high-quality rice noodles.
Escherichia albertii is an emerging foodborne enteropathogen associated with infectious diarrhoea in humans. In February 2023, an outbreak of acute gastroenteric cases was reported in a junior high school located in Hangzhou, Zhejiang province, China. Twenty-two investigated patients presented diarrhoea (22/22, 100%), abdominal pain (21/22, 95.5%), nausea (6/22, 27.3%), and vomiting (3/22, 13.6%). E. albertii strains were successfully isolated from anal swabs collected from six patients. Each isolate was classified as sequence type ST2686, harboured eae-β gene, and carried both cdtB-I and cdtB-II subtypes, being serotyped as EAOg32:EAHg4 serotype. A comprehensive whole-genome phylogenetic analysis revealed that the six isolates formed a distinct cluster, separate from other strains. These isolates exhibited minimal genetic variation, differing from one another by 0 to 1 single nucleotide polymorphism, suggesting a common origin from a single clone. To the best of our knowledge, this represented the first reported outbreak of gastroenteritis attributed to E. albertii outside of Japan on a global scale.
Understanding the yield attributes of rice crops grown at super high-yielding sites is useful for identifying how to achieve super high yield in rice. In this study, field experiments were conducted in 2021 and 2022 to compare grain yield and yield attributes of ten high-yielding hybrid rice varieties between Xingyi (a super high-yielding site) and Hengyang (a site with typical yields). Results showed that Xingyi produced an average grain yield of 13.4 t ha−1 in 2021 and 14.0 t ha−1 in 2022, which were, respectively, 20% and 44% higher than those at Hengyang. Higher panicles per m2 and higher grain weight were responsible for the higher grain yield at Xingyi compared to Hengyang. The higher values of panicles per m2 and grain weight at Xingyi compared to Hengyang were due to greater source capacity resulting from improved pre-heading biomass production. This study suggests that simultaneously increasing panicle number and grain weight through improving pre-heading biomass production is a potential way to achieve super high yield in rice.
Numerical simulations are carried out on the vortex-induced rotations of a freely rotatable rigid square cylinder in a two-dimensional uniform cross-flow. A range of Reynolds numbers between 40 and 150 and density ratios between 0.1 and 10 are considered. Results show eight different characteristic regimes, expanding the classification of Ryu & Iaccarino (J. Fluid Mech., vol. 813, 2017, pp. 482–507). New regimes include the transition and wavy rotation regimes; in the ${\rm \pi}$-limited oscillation regime we observe multipeak subregimes. Moment-generating mechanisms of these regimes and subregimes are further elucidated. A phenomenon related to the influence of density ratio is the tooth-like shape of the ${\rm \pi} /2$-limit oscillation regime observed in the regime map, which is explained as a result of the imbalance relation between the main frequencies of rotation response and the vortex shedding frequency. In addition, existence of multiple regimes and multistable states are discussed, indicating multiple stable attractive structures in phase space.
tDCS application to the DLPFC is associated with the improvements of executive function, memory enhancement, language, processing speed, global cognitive symptoms and apathy over time after treatment. DLB is the second most common form of degenerative dementia. There is no FDA-approved medications that can slow, stop or improve the progression of cognitive declines in DLB. Identifying effective treatments is a critical issue for DLB. In neuropathology, extracelluar α-syn oligomers interfere with the expression of long-term potentiation(LTP), and influence memory and learning. tDCS has been proposed to affect long-term synaptic plasticity through LTP and long-term depression, thereby improving cognitive ability. So far, only two studies have evaluated the effect of tDCS in DLB. In this pilot study, we investigate the effect of tDCS on left DLPFC in DLB.
Method:
Fourteen DLB aged 55-90 years (mean age 76.4, with 4 males and 10 females) were included in a double-blind, randomized, sham-controlled cross over design study. DLB diagnostics is according to DSM-5 criteria. CDR ratings for DLB participants ranged from 0.5 to 2. The active tDCS (or sham) process consists of daily sessions of active tDCS (or sham) for 10 consecutive days. The anodal electrode was placed over the left DLPFC and the cathodal electrode was placed over the right supraorbital area, with a current intensity of 2 mA and an electrode size of 25 cm2 for 30 min in a session. Before and after these treatment sessions, all subjects received a series of neuropsychological tests, including CDR, MMSE, CASI, NPI and WCST. Chi-square test, Wilcoxon signed ranks test and Mann-Whitney U test were used to assess differences in participant demographic characteristics and to compare differences among groups.
Results:
The active tDCS group showed significant improvements on the three items of CASI, ‘language ability’, ‘concentration and calculation’, ‘categorical verbal fluency’, after active stimulations. There is no improvement in MMSE, CASI, NPI and WCST scores in the sham groups.
Conclusion:
These results suggest that left DLPFC anodal, and right deltoid cathodal tDCS, may have some cognitive benefits in DLB. Larger-scale trials are needed to confirm the effect of tDCS in DLB.
Key words: Transcranial Direct Current Stimulation, Dementia with Lewy Bodies, cognitive function, Wisconsin Card Sorting Test, left DLPFC
Transcranial direct current stimulation (tDCS) has been proposed to affect long-term synaptic plasticity through LTP and LTD, thereby improving cognitive ability. In pathology, the amyloid deposits in AD disrupts the balance between long-term potentiation (LTP) and long-term depression (LTD) of neuronal cells and synaptic plasticity. An increasing number of studies have been concluded a positive therapeutic effect on cognition in AD. In brain stimulation, dorsolateral prefrontal cortex (DLPFC) was associated with improvements in memory enhancement, language, processing speed, global cognitive symptoms, and apathy over a period of treatment. Theoretically, the aftereffect of tDCS would need to be re-stimulated by tDCS to maintain its delayed plastic response benefits. In this pilot study, we investigate the maintenance effects of continuing tDCS at three different times, weekly, every two weeks, and every four weeks, for 12 weeks.
Method:
Twenty-eight AD participants aged 55-90 years were enrolled (mean age 72.7, 77.3, and 76.2 in the three groups - maintained weekly (7 cases), biweekly (9 cases) and every 4 weeks (12 cases)). The anodal electrode was placed over the left dorsal lateral prefrontal cortex and the cathodal electrode was placed over the right supraorbital area. In each active session, we applied a current intensity of 2 mA and an electrode size of 25 cm2 for 30 min. All subjects received a series of neuropsychological assessments including CDR, MMSE, CASI and WCST at (1) baseline, (2) post-10sessions of tDCS (in 2weeks), and (3) post-maintenance phase (total of 12 weeks). Chi-square tests, Wilcoxon signed rank tests and Mann-Whitney U tests were used to assess differences in participant demographic characteristics and to compare differences in test scores between groups.
Results:
After 10 sessions of tDCS stimulations, the total CASI scores in the 1-week group improved significantly from baseline to 2 weeks. However, there are no significant difference in MMSE, CASI or WCST between baseline and after maintain phase stimulations in each group.
Conclusion:
Although tDCS has a positive effect in AD, it is recommended to prolong the number of tDCS stimulations, such as 20 sessions in 4 weeks.
The production and industrial use of asbestos cement and other asbestos-containing materials have been restricted in most countries because of the potential detrimental effects on human health and the environment. Chrysotile is the most common form of asbestos and investigations into how to recycle this serpentine phyllosilicate mineral have attracted extensive attention. Chrysotile asbestos tailings can be transformed thermally, at high temperature, by in situ carbothermal reduction (CR). The CR method aims to maximize use of the chrysotile available and uses high temperatures and carbon to change the mineral form and structure of the chrysotile asbestos tailings. When chrysotile asbestos is employed as the raw material and coke (carbon) powder is used as the reducing agent for CR transformation, stable, high-temperature composites consisting of forsterite, stishovite, and silicon carbide are formed. Forsterite (Mg2SiO4) was the most abundant crystalline phase formed in samples heat treated below 1500ºC. At 1600ºC, forsterite was exhausted through decomposition and β-SiC formed by reduction of stishovite. A larger proportion of β-SiC was generated as the carbon content was increased. This research revealed that both temperature and carbon addition play key roles in the transformation of chrysotile asbestos tailings.
This study is the further research of the path encoding pulse compression technique. In this study, the regularity of pulse compression gain is studied by adopting the numerical simulation and experiment measurement methods. For the lossless cavity, the power gain has the characteristic of equal pulse length with equal compression gain contribution according to the numerical simulation results. It means that the pulse compression gain is increased linearly along with the time length of the input pulse. The obtained pulse power gains are equal for the two subpulses intercepted arbitrarily form the input pulse with equal time length for the pulse compression. For the lossy cavity, the power gain usually does not increase significantly after the length of input pulse reaches to a certain value. The gain contribution decreases gradually along with the increase of time length of input pulse until the growth rate of gain contribution equals to zero. Assuming two subpulses with equal time length were intercepted from the input pulse, the gain contribution of the earlier subpulse is lower than that of the later subpulse. The measured results verified the simulated gain contribution regularity according to the established experimental system.
Based on the path encoding pulse compression teleology, a novel method for obtaining high-power microwave (HPM) pulse with ultrahigh repetition frequency is proposed in this paper. The mechanism of the path encoding pulse compression teleology is first introduced. And then, the obtained HPM pulse is analyzed. Theoretical analysis shows that the peak power of MW level and the repetition frequency of MHz level for the generated HPM pulse can be easily reached. To demonstrate the effectiveness of this method for obtaining HPM pulse with ultrahigh repetition frequency characteristic, a HPM-obtaining experiment was carried out based on an S-band microwave source. The HPM pulses with the width of 1 ns, 2 ns, and 3 ns are studied, respectively. The measured results show that the HPM pulse with the power higher than 100 kW and the repetition frequency of 250 kHz at the frequency of 2.856 GHz is easily obtained. The repetition frequency of the generated HPM pulse can be easily changed. Because the pulse with the power higher than 100 kW and the repetition frequency of several hundreds of kHz is obtained for the first time, this type of pulse will have a broad prospect of application in the communication, radar, and electronic countermeasure fields. In addition, the effect experiment of interfering communication and control links was carried out by utilizing the ultrahigh repetition frequency characteristic of the generated HPM pulse. Also, the experiment results show the feasibility of this pulse for interfering the communication and control links.
The late third-millennium BC Longshan period was a crucial time for state formation in central China. During these centuries, long-distance networks expanded and shared material culture and then cultural practices spread across wider areas precipitating social and ideological developments that presaged the rise of states and cities on the Central Plain. In this research, the authors use multiple (strontium, oxygen and carbon) isotope analyses from the dental enamel of 67 individuals buried at the Xiajin cemetery, Shanxi Province. The results indicate significant long-distance migration among females during the Longshan period, which the authors interpret as evidence of exogamous marriage for political alliance-building—a phenomenon found more widely across Eurasia at the start of the Bronze Age.
Aerospace represents the development of national science and technology. It is an important foundation for exploring space and an important guarantee for the construction of aerospace power. There are many large workpieces in the aerospace field. The box insulation layer of large workpieces is an important processing problem. A new thick processing equipment is proposed to process the box insulation layer of large workpieces. The thick processing equipment consists of the XYZ shaft long guide rail and five degrees of freedom (5-DOF) RAPA. The mechanical structure of the 5-DOF RAPA is a redundantly actuated parallel mechanism (RAPM). Meanwhile, this paper proposes a new method to design 5-DOF redundantly actuated parallel mechanisms (RAPMs) with large output rotational angles. Based on configuration evolution and Li group, two articulated moving platforms (AMPs) and four kinds of limbs are designed, and a series of 3T2R (T represents translation, R represents rotation) RAPMs and 2T3R RAPMs are synthesized. To verify the designed RAPMs with large angle, an example of RAPMs, 4UPS-{2UPR}-R is analyzed. To ensure that the RAPM has no mechanism vibration impact in movement, this paper represents the RAPM adopts a newly proposed trajectory planning method. The results show that the 4SPU-(2UPR)R mechanism possesses large angles and verifies the efficiency of the new proposed trajectory planning method in simplified trajectories. This work lays the foundation for processing the box insulation layer of large workpieces with straight lines and arcs paths.
The power exchange between fluid and structure plays a significant role in the force production and flight efficiency of flapping wings in insects and artificial flyers. This work numerically investigates the performance of flapping wings by using a high-fidelity fluid–structure interaction solver. Simulations are conducted by varying the hinge flexibility (measured by the Cauchy number, $Ch$, i.e. the ratio between aerodynamic and torsional elastic forces) and the wing shape (quantified by the radius of the first moment of area, $\bar {r}_1$). Results show that the lift production is optimal at $0.05 < Ch \leq 0.2$ and larger $\bar {r}_1$ where the minimum angle of attack is around $45^\circ$ at midstroke. The power economy is maximised for wings with lower $\bar {r}_1$ near $Ch=0.2$. Power analysis indicates that the optimal performance measured by the power economy is obtained for those cases where two important power synchronisations occur: anti-synchronisation of the pitching elastic power and the pitching aerodynamic and inertial powers and nearly in-phase synchronisation of the flapping aerodynamic power and the total input power of the system. While analysis of the kinematics for the different wing shapes and hinge stiffnesses reveals that the optimal performance occurs when the timing of pitch and stroke reversals are matched, thus supporting the effective transfer of input power from flapping to passive pitching and into the fluid. These results suggest that careful optimisation between wing shapes and hinge properties can allow insects and robots to exploit the passive dynamics to improve flight performance.
Households in poverty often face psychological stress and anxiety disorders, which affect their poverty alleviation outcomes and quality of life. Emotion-Focused Therapy (EFT) is an effective psychological intervention that helps individuals regulate emotions and cope with stress. This study aims to investigate the impact of EFT on anxiety disorders and provide effective intervention methods and support.
Participants and Methods
100 impoverished households with anxiety disorders were selected as the experimental group for EFT and another 100 with the same situation as control group. The Beck Anxiety Inventory (BAI) was used to evaluate both groups, along with the application of EFT. Each treatment cycle consisted of 10 sessions, and three cycles constituted one treatment course. Depression scores were assessed for both groups at the end of each cycle until four treatment courses were completed.
Results
After one treatment course, the average scores for the experimental and control groups were 52 and 53, respectively. After three treatment courses, the average scores were 43 and 52 for the experimental and control groups, respectively. After the intervention of EFT, the experimental group showed a significant reduction in anxiety levels, improved emotional regulation, and alleviation of psychological stress during the poverty alleviation process. There were no significant changes in anxiety levels for the control group.
Conclusions
EFT has a positive impact on anxiety disorders during the poverty alleviation process for rural households. These research findings provide a basis for effective intervention measures and support for rural households, enabling them to better cope with psychological distress and challenges during the poverty alleviation process.
Submerged vegetation plays a subtle role in exchanging the fluid mass and energy in the vegetated flow zone, where the swaying motions of flexible plants are the important source of turbulent kinetic energy production. Flume experiments were conducted to study the modes, characteristics and factors of swaying of individual submerged flexible plants. A modified plant model in a new form, representing the highly flexible vegetation with clustered leaves, was employed. A ‘rigid-like’ synchronous swaying mode and a ‘whip-like’ asynchronous flapping mode are found to appear alternately for the individual plants. The interaction between these modes depends on the resulting local flow structure affected by the plants. Compared with a plant in isolation with the same flow Reynolds number, the swaying motions of a plant within the vegetation patch are less frequent but more prone to the synchronous mode. The eigen frequency of the motions increases linearly with an increase in flow Reynolds number in the range of 2 × 104–5 × 104, but the normalised amplitude reaches a saturation at a high flow Reynolds number. Moreover, the in-line and spanwise motions have a 2 : 1 frequency ratio for an ‘8’ shaped trajectory on the horizontal plane and a 1 : 1 ratio for a ‘0’ shaped circular trajectory, or a combination of both.
This paper presents systematic molecular dynamics modelling of Na-montmorillonite subjected to uniaxial compression and unidirectional shearing. An initial 3D model of a single-cell Na-montmorillonite structure is established using the Build Crystal module. The space group is C2/m, and COMPASS force fields are applied. Hydration analysis of Na-montmorillonite has been performed to validate the simulation procedures, where the number of absorbed water molecules varied with respect to the various lattice parameters. A series of uniaxial compression stress σzz and unidirectional shear stress τxy values are applied to the Na-montmorillonite structure. It is shown that the lattice parameter and hydration degree exhibit significant influence on the stress–strain relationship of Na-montmorillonite. The ultimate strain increases with increases in the lattice parameter but decreases in the number of water molecules. For saturated Na-montmorillonite, more water molecules result in a stiffer clay mineral under uniaxial compression and unidirectional shearing.
This study aimed to establish a model for predicting the three-year survival status of patients with hypopharyngeal squamous cell carcinoma using artificial intelligence algorithms.
Method
Data from 295 patients with hypopharyngeal squamous cell carcinoma were analysed retrospectively. Training sets comprised 70 per cent of the data and test sets the remaining 30 per cent. A total of 22 clinical parameters were included as training features. In total, 12 different types of machine learning algorithms were used for model construction. Accuracy, sensitivity, specificity, area under the receiver operating characteristic curve and Cohen's kappa co-efficient were used to evaluate model performance.
Results
The XGBoost algorithm achieved the best model performance. Accuracy, sensitivity, specificity, area under the receiver operating characteristic curve and kappa value of the model were 80.9 per cent, 92.6 per cent, 62.9 per cent, 77.7 per cent and 58.1 per cent, respectively.
Conclusion
This study successfully identified a machine learning model for predicting three-year survival status for patients with hypopharyngeal squamous cell carcinoma that can offer a new prognostic evaluation method for the clinical treatment of these patients.
In the Three Gorges and adjacent areas, there are three planation surfaces and five terraces along the Yangtze River that record the evolution history of the river system. Here, we used diagnostic heavy minerals, U-Pb geochronology, and trace elements of detrital zircons from one planation surface, two terraces, and a modern point bar to reconstruct the evolution history of the upper Yangtze River, specifically the Chuan River in the Sichuan Basin. The sediments in the lowest planation surface had different felsic source rocks derived from east of the Three Gorges, which indicated that before the disintegration of the lowest planation surface (0.75 Ma), there were two paleorivers: the westward-flowing paleo-Chuan River and eastward-flowing paleo-Yangtze River separated by the Huangling Dome. At 0.75–0.73 Ma, the dominant detrital zircons from the Sichuan Basin in the sediments of terrace T5 (the highest terrace) confirmed that the paleo-Yangtze River cut through the Three Gorges and captured the paleo-Chuan River, and the Daliang Mountains became the new drainage divide. Finally, the appearance of materials from the upper Jinsha River in terrace T2 indicated that the paleo-Yangtze River progressively captured the paleo-Jinsha River, and the modern upper Yangtze River formed before 0.05 Ma. These river capture events of the upper Yangtze River confirmed the Quaternary uplift of the SE Tibetan Plateau.