We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A multifunctional optical diagnostic system, which includes an interferometer, a refractometer and a multi-frame shadowgraph, has been developed at the Shenguang-II upgrade laser facility to characterize underdense plasmas in experiments of the double-cone ignition scheme of inertial confinement fusion. The system employs a 266 nm laser as the probe to minimize the refraction effect and allows for flexible switching among three modes of the interferometer, refractometer and multi-frame shadowgraph. The multifunctional module comprises a pair of beam splitters that attenuate the laser, shield stray light and configure the multi-frame and interferometric modules. By adjusting the distance and angle between the beam splitters, the system can be easily adjusted and switched between the modes. Diagnostic results demonstrate that the interferometer can reconstruct electron density below 1019 cm–3, while the refractometer can diagnose density approximately up to 1020 cm–3. The multi-frame shadowgraph is used to qualitatively characterize the temporal evolution of plasmas in the cases in which the interferometer and refractometer become ineffective.
Major psychiatric disorders (MPDs) are delineated by distinct clinical features. However, overlapping symptoms and transdiagnostic effectiveness of medications have challenged the traditional diagnostic categorisation. We investigate if there are shared and illness-specific disruptions in the regional functional efficiency (RFE) of the brain across these disorders.
Methods
We included 364 participants (118 schizophrenia [SCZ], 80 bipolar disorder [BD], 91 major depressive disorder [MDD], and 75 healthy controls [HCs]). Resting-state fMRI was used to caclulate the RFE based on the static amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality and corresponding dynamic measures indicating variability over time. We used principal component analysis to obtain static and dynamic RFE values. We conducted functional and genetic annotation and enrichment analysis based on abnormal RFE profiles.
Results
SCZ showed higher static RFE in the cortico-striatal regions and excessive variability in the cortico-limbic regions. SCZ and MDD shared lower static RFE with higher dynamic RFE in sensorimotor regions than BD and HCs. We observed association between static RFE abnormalities with reward and sensorimotor functions and dynamic RFE abnormalities with sensorimotor functions. Differential spatial expression of genes related to glutamatergic synapse and calcium/cAMP signaling was more likely in the regions with aberrant RFE.
Conclusions
SCZ shares more regions with disrupted functional integrity, especially in sensorimotor regions, with MDD rather than BD. The neural patterns of these transdiagnostic changes appear to be potentially driven by gene expression variations relating to glutamatergic synapses and calcium/cAMP signaling. The aberrant sensorimotor, cortico-striatal, and cortico-limbic integrity may collectively underlie neurobiological mechanisms of MPDs.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice (Oryza sativa L.) fields has been increasing, likely due to changing paddy-farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil-flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, nonstructural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchymal fibers, with lignin content also increasing. After 90 d, the lignified sclerenchymal fibers and lignin contents were 4.0 and 1.1 times higher than those in the no soil-flooding treatment. Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil-flooding conditions by adopting a low-oxygen quiescence strategy, which involves morphological adaptations through the development of lignified sclerenchymal fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
MicroRNAs (miRNAs) are endogenous, non-coding RNAs, which are functional in a variety of biological processes through post-transcriptional regulation of gene expression. However, the role of miRNAs in the interaction between Bacillus thuringiensis and insects remains unclear. In this study, small RNA libraries were constructed for B. thuringiensis-infected (Bt) and uninfected (CK) Spodoptera exigua larvae (treated with double-distilled water) using Illumina sequencing. Utilising the miRDeep2 and Randfold, a total of 233 known and 726 novel miRNAs were identified, among which 16 up-regulated and 34 down-regulated differentially expressed (DE) miRNAs were identified compared to the CK. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that potential target genes of DE miRNAs were associated with ABC transporters, fatty acid metabolism and MAPK signalling pathway which are related to the development, reproduction and immunity. Moreover, two miRNA core genes, SeDicer1 and SeAgo1 were identified. The phylogenetic tree showed that lepidopteran Dicer1 clustered into one branch, with SeDicer1 in the position closest to Spodoptera litura Dicer1. A similar phylogenetic relationship was observed in the Ago1 protein. Expression of SeDicer1 increased at 72 h post infection (hpi) with B. thuringiensis; however, expression of SeDicer1 and SeAgo1 decreased at 96 hpi. The RNAi results showed that the knockdown of SeDicer1 directly caused the down-regulation of miRNAs and promoted the mortality of S. exigua infected by B. thuringiensis GS57. In conclusion, our study is crucial to understand the relationship between miRNAs and various biological processes caused by B. thuringiensis infection, and develop an integrated pest management strategy for S. exigua via miRNAs.
Between 1993 and 1997, 837 stray dogs from North Taiwan were necropsied and examined for dog heartworm infections. A thick smear from 20 ml of peripheral blood from each dog was also prepared and examined for microfilariae (mf). The overall prevalence of adult worms in the dog population was 57%. The prevalence of mf in 1228 house dogs from different parts of Taiwan was also determined from 20 ml of peripheral blood in the same way. The overall prevalence of mf was 25%, with a value of 30% in the main island of Taiwan, this being 15 times higher than that in the offshore islands (2%). In Taiwan, the prevalence ranged from 4% in Hualien County, East Taiwan, to 41% in Nantou County, Central Taiwan. The mf prevalences on offshore islands were 1% on Liuchiu and 2% on Lanyu. The mf density per 20 ml blood in 82 house dogs was found to be 23 mf per dog, with a range of 3–97 mf per dog. A total of 477 stray dogs were found to be infected with adult worms of Dirofilaria immitis. The mean number of 7 worms per dog was obtained, with a range of 1–55 worms per dog. These results indicate that the prevalence of canine dirofilariasis has increased in Taiwan over the past 10 years. Moreover, the prevalence may be related to the wind speed, temperature, relative humidity, and altitude in the different areas surveyed.
Do it right the first time! But, how? Current dialogue on the expansion of emerging market multinational enterprises (EMNEs) is pervasive. Nonetheless, it ought to have examined strategic attributes and the speed of implementing different strategies for their first venture. Drawing on the springboard perspective, this study tests the impact of EMNEs' first cross-border acquisition (CBA) strategy and speed on their consequential expansion frequency and performance. We also examine the boundary conditions of comparative nationalism between countries, in view of the resurgence of nationalism in an era of deglobalization. Findings reveal that EMNEs' rapid adoption of a focused strategy for their first CBA increases their expansion frequency, while the adoption of a conglomerate strategy decreases it. These relationships are affected in reverse by high comparative nationalism, and the performance consequences of expansion vary with firms using different strategies for their first attempt. This study enriches the EMNE literature and highlights the role of national ideologies in international business research.
Adherence to post-exposure prophylaxis and post-exposure vaccination (PEV) is an important measure to prevent rabies. The purpose of this study was to explore the adherence to the vaccination protocol and its influencing factors among rabies-exposed patients in Shenzhen, China. A cross-sectional survey was conducted in a tertiary hospital in Shenzhen, China, to obtain epidemiological characteristics of patients; knowledge, attitude, and practice scores of rabies prevention; and medical records. A total of 326 patients requiring full rabies PEV were included in this study, and only 62% (202) completed the full course of vaccination according to the norms of the vaccination guidelines. After multifactor logistic regression, the factors influencing adherence to vaccination were as follows: age 31 to 40 years, time spent to reach the nearest rabies prevention clinic was >60 min, the time of injury was at night to early morning, the place of injury was a school/laboratory, the animal causing injury was a cat, the health status of the animal causing injury could not be determined, and patients with higher practice scores (all p<0.05). Understanding the factors influencing rabies vaccination adherence among rabies-exposed patients in urban areas of China and promote changes in patients’ practice toward rabies prevention is essential for rabies elimination by 2030.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
A transmission line circuit model was conducted to compare the performances of the two-level 2.5 Ω magnetically insulated transmission lines (MITLs) system of a 5-MA linear-transformer-driver (LTD) accelerator for two kinds of typical loads, including bremsstrahlung electron beam diodes and Z-pinch loads. Both the electron current loss in the pulse front during the magnetic insulation setup process and the electron flow distribution in the magnetic insulation steady state were analyzed. When the accelerator drives an electron beam diode load with impedance of 1.20 Ω (a single level), the duration of the magnetic insulation setup is about 12 ns, the current loss is about 130 kA in a single MITL level, the maximum electron flow current is about 50 kA in the end of MITL, and its amplitude decreases gradually after the steady magnetic insulation is established. When the accelerator drives a Z-pinch load with length of 1.5 cm, radius of 1.2 cm, and mass of 0.3 mg/cm, the duration of the magnetic insulation setup is almost zero, the maximum electron flow current in the end of MITL can reach about 55 kA (a single level), and the waveform of the electron flow resembles a saddle shape, which reaches the peak at the pinch stagnation time.
Focusing on the public hysteria in August 1923 caused by the doomsday prophecy made and propagated by a redemptive society, the Society for the Great Unity of World Religions, this essay first explores the social, technical and intellectual infrastructure that facilitated the prophecy’s rapid spread. Second, it investigates the responses of the general public and religious organizations, in particular the Moral Study Society (Daode xueshe 道德學社). In the end, the eschatological fear confirmed the meliorism and universalism among Chinese religious groups. Finally, the swift transmission of the 1923 apocalyptic prophecy can be used to evaluate the role of traditional religious ideas, aligned with new techniques of modernity, amidst the socio-political turmoil that plagued China at the time.
Keywords: redemptive societies, Society for the Great Unity of World Religions (Shijie zongjiao datong hui), Moral Study Society (Daode xueshe), doomsday prophecy, Tang Huanzhang, printing industry and printing technology
Prologue
In August 1923, the year of kuihai 癸亥 (the last year of the sixty-year cycle in the Chinese calendrical system), placards containing a doomsday prophecy were found circulating through Beijing and Sichuan, Hebei, Hubei, Jiangsu, and Zhejiang provinces. The public fell into paranoia. A few copies of the placards were preserved thanks to, for example, the acclaimed scholar Hu Shi 胡適 (1891–1962) who collected them in his diary. Produced by a redemption society called the Society for the Great Unity of World Religions (Shijie zongjiao datong hui 世界宗教大同會), the placards warned that apocalypse would arrive on the fifteenth day of the eighth lunar month, or September 25, 1923. Catastrophes such as earthquakes, tsunamis, and meteorites would appear and kill one-third of the world population. The prophecy concluded with recommended methods of survival and urged readers to distribute the message. It so happened that on September 1, twenty-five days before the predicted doomsday, the Great Kantō Earthquake rocked Tokyo, claiming more than 100,000 lives and leaving horrific destruction. Suddenly it seemed that the end of the world really was near.
The 1923 doomsday hysteria has received some academic attention. Wang Chien-chuan 王見川 investigated the prophecy’s content and its primary advocate, the Society for the Great Unity of World Religions. He reconstructed chronical accounts of the founder, Tang Huanzhang 唐煥章 (1880–1923?), and the missionary activities of his principal followers.
Major epidemics have had a huge impact on the manufacturing industry. This study aimed to explore knowledge innovation in the field of emergency manufacturing during pandemics with a systematic quantitative analysis.
Methods:
Based on the Web of Science (WOS) Core Collection, the bibliometric method and the CiteSpace tool were used.
Results:
A total of 286 literature were obtained from the WOS database. During coronavirus disease (COVID-19), there was a surge in the number of publications. A new field of research on pandemic-triggered emergency manufacturing is gradually forming with accumulated research output. The analysis of the document co-citation showed how the research on pandemic situations and viruses brought emergency manufacturing into the research scope of scholars, and what attempts were made by the original scholars. Pandemic-triggered research hotspots and research trends in the post-pandemic era mainly boiled down to 3 aspects: technological innovation, material innovation, and management innovation in the field of emergency manufacturing.
Conclusions:
COVID-19 strengthened academic exchange and cooperation and promotes knowledge output in this field. This study provides an in-depth perspective for emergency manufacturing research and helps researchers realize the panorama of this field and establish future research directions.
Internalising disorders are highly prevalent emotional dysregulations during preadolescence but clinical decision-making is hampered by high heterogeneity. During this period impulsivity represents a major risk factor for psychopathological trajectories and may act on this heterogeneity given the controversial anxiety–impulsivity relationships. However, how impulsivity contributes to the heterogeneous symptomatology, neurobiology, neurocognition and clinical trajectories in preadolescent internalising disorders remains unclear.
Aims
The aim was to determine impulsivity-dependent subtypes in preadolescent internalising disorders that demonstrate distinct anxiety–impulsivity relationships, neurobiological, genetic, cognitive and clinical trajectory signatures.
Method
We applied a data-driven strategy to determine impulsivity-related subtypes in 2430 preadolescents with internalising disorders from the Adolescent Brain Cognitive Development study. Cross-sectional and longitudinal analyses were employed to examine subtype-specific signatures of the anxiety–impulsivity relationship, brain morphology, cognition and clinical trajectory from age 10 to 12 years.
Results
We identified two distinct subtypes of patients who internalise with comparably high anxiety yet distinguishable levels of impulsivity, i.e. enhanced (subtype 1) or decreased (subtype 2) compared with control participants. The two subtypes exhibited opposing anxiety–impulsivity relationships: higher anxiety at baseline was associated with higher lack of perseverance in subtype 1 but lower sensation seeking in subtype 2 at baseline/follow-up. Subtype 1 demonstrated thicker prefrontal and temporal cortices, and genes enriched in immune-related diseases and glutamatergic and GABAergic neurons. Subtype 1 exhibited cognitive deficits and a detrimental trajectory characterised by increasing emotional/behavioural dysregulations and suicide risks during follow-up.
Conclusions
Our results indicate impulsivity-dependent subtypes in preadolescent internalising disorders and unify past controversies about the anxiety–impulsivity interaction. Clinically, individuals with a high-impulsivity subtype exhibit a detrimental trajectory, thus early interventions are warranted.
This study aims at establishing a model for close-contact melting (CCM) of shear-thinning fluids. We presented a theoretical framework for predicting the variation of liquid melt film thickness and motion of unmelted solid for both Carreau and power-law fluids. We identified the appropriate energy equation considering the convective effect and derived an analytical temperature profile across the liquid film. Using the lubrication approximation, force equilibrium relationships and the corresponding numerical approaches were built. By using laser interferometry and photographic recording methods, we found excellent agreement between numerical solutions and experimental results for Carreau liquids, revealing that the convective effect weakens heat transfer and melting rate. We identified the critical liquid film thickness that determines three situations of CCM in the theoretical model for Carreau fluids. Numerical prediction demonstrated that the CCM of Carreau fluids can be almost equivalent to that of power-law fluids if the initial film thickness is greater than the critical value. Finally, approximate analytical models were developed for both Carreau and power-law models. For the applicability of the approximate analytical solutions, we derived two- and three-dimensional dimensionless phase diagrams of validity range and identified a key dimensionless group $(\varLambda Re)^{4/3}{Re}\left [3\ln (Ste+1)\right ]^{1/3}{Pe}^{-1/3}$, where $\varLambda$ is dimensionless characteristic time, Re is Reynolds number, Ste is Stefan number and Pe is Peclect number. The reliability of the approximate solutions was verified by comparing with the numerical results. These approximate solutions enable convenient and low-cost computational prediction of the dynamic CCM process of shear-thinning fluids.
A high-energy, alignment-insensitive, injection-seeded Q-switched Ho:yttrium aluminum garnet (YAG) single-frequency laser is developed. Both the slave Q-switched laser and the seed laser are Ho:YAG ring lasers based on a pair of corner cubic reflectors. The seed laser has an available power of 830 mW at 2096.667 nm. At 100 Hz, the Q-switched Ho:YAG laser provides a single-frequency pulsed output using injection-seeded technology. The 7.3 mJ single-frequency pulse energy from the slave laser has a pulse width of 161.2 ns and is scaled to 33.3 mJ after passing through the Ho:YAG single-pass amplifier. According to the measurement results of the heterodyne beating technique, the single-frequency pulse has a half-width of 4.12 MHz.
Due to the curvature of the droplet surface, the propagation of transmitted waves is complex inside a droplet impacted by an incident shock wave. The wave converging phenomena inside a two-dimensional water column impacted by different curved shock waves are explored in this paper by means of theoretical ray analysis and high-resolution numerical simulations. An analytical method describing the wave structure evolution characteristics inside the shocked water column is established. Hence, the morphological pattern and focus locations of these waves are theoretically obtained. The analysis shows that both the first and the second reflected waves focus inside the water column regardless of the convergent, planar or divergent nature of the incident shock wave shape. The dimensionless distances from focusing points to the column centre are derived as ${\kappa }/{( 3\kappa -{{M}_{0}}{{f}_{s}} )}$ for the former and ${\kappa }/{( 5\kappa -{{M}_{0}}{{f}_{s}})}$ for the latter, respectively. Here, $\kappa$, $M_0$ and $f_s$ represent the sound-speed ratio of the two phases, the incident shock wave strength and a function characterising the shock wave shape effect, respectively. Moreover, highly negative pressures due to the first reflected wave focusing and significant pressure oscillations due to the second reflected wave focusing are numerically tracked for three shapes of the incident shock. The effects of the incident shock wave intensity on the pressure variations at focus points are further studied. As the incident shock wave intensity increases, stronger negative pressure and higher pressure oscillation are induced. The converged incident shock wave can enhance the above phenomena, but the diverged one can weaken them.
In an unstructured environment, the arm can perform complicated tasks with rapidity, flexibility, and robustness. It is difficult to configure multiple artificial muscles similar to an arm in the compact space of a robotic arm. When muscle tension is transferred, mechanisms like tendon-sheath/tendon-pulley may be installed in a compact space to develop musculoskeletal robots that are closer to the arm. However, handling variable frictional nonlinearity and elastic cable deformation is necessary for transmission stability. In this study, the modular artificial muscle system (MAMS), including motor cable artificial muscle and tendon sheath–pulley system (TSPS), that can be installed remotely and transmit muscle tension in narrow paths, is designed. The feed-forward multi-layer neural network (FF-MNN) approach is utilized to discuss the relationship between the measurable input tension of TSPS and the unmeasurable output tension and cable elongation. Subsequently, the lightweight musculoskeletal arm (LM-Arm) is built to verify the validity of MAMS. Through trials, the experiments of MAMS after friction compensating and the LM-Arm’s end-point 3D trajectory tracking are investigated. The results show that average errors of the active and passive muscles tension are 3.87 N and 3.51 N, respectively, under conditions of larger load and higher contraction velocity. The average muscle length error of trajectory tracking is 0.00078 m (0.72%). The suggested MAMS may successfully build a musculoskeletal robot that has similar flexibility and morphology to the arm. It can also be utilized to power various pieces of machinery, such as rescue robot, invasive surgical robots, dexterous hands, and wearable exoskeletons.
This paper proves the energy equality for distributional solutions to fractional Navier-Stokes equations, which gives a new proof and covers the classical result of Galdi [Proc. Amer. Math. Soc. 147 (2019), 785–792].
This paper presents a feedforward compensation approach for musculoskeletal systems (MSs). Compared with traditional rigid robots, human arms have the advantages of flexibility and safety in operation in unstructured environments. However, the influence of external unknown disturbances, inner friction effects, and dynamic uncertainties of the MS makes it difficult to model and practically apply. In order to reduce the inner friction effects of the hardware platform and the over-relaxation/tension of the cable-pull drive, a feedforward friction compensation method for the cable-pulled artificial muscle unit is proposed. The method analyzes the friction causes of the hardware structure and establishes a mapping network relationship between the joint variables and the muscle force error in the muscle space. The experimental results show that the method can effectively improve the control accuracy and reduce the artificial muscle over-relaxation/tension instability.
The sequential occurrence of three layers of smooth muscle layers (SML) in human embryos and fetus is not known. Here, we investigated the process of gut SML development in human embryos and fetuses and compared the morphology of SML in fetuses and neonates. The H&E, Masson trichrome staining, and Immunohistochemistry were conducted on 6–12 gestation week human embryos and fetuses and on normal neonatal intestine. We showed that no lumen was seen in 6–7th gestation week embryonic gut, neither gut wall nor SML was developed in this period. In 8–9th gestation week embryonic and fetal gut, primitive inner circular SML (IC-SML) was identified in a narrow and discontinuous gut lumen with some vacuoles. In 10th gestation week fetal gut, the outer longitudinal SML (OL-SML) in gut wall was clearly identifiable, both the inner and outer SML expressed α-SMA. In 11–12th gestation week fetal gut, in addition to the IC-SML and OL-SML, the muscularis mucosae started to develop as revealed by α-SMA immune-reactivity beneath the developing mucosal epithelial layer. Comparing with the gut of fetuses of 11–12th week of gestation, the muscularis mucosae, IC-SML, and OL-SML of neonatal intestine displayed different morphology, including branching into glands of lamina propria in mucosa and increased thickness. In conclusions, in the human developing gut between week-8 to week-12 of gestation, the IC-SML develops and forms at week-8, followed by the formation of OL-SML at week-10, and the muscularis mucosae develops and forms last at week-12.
Aiming at the problem of low accuracy of robot joint fault diagnosis, a fault diagnosis method of robot joint based on BP neural network is designed. In this paper, the UR10 robot is taken as the research object, and the end pose data of the robot are collected in real time. By injecting different joint errors and changing the sampling frequency, the joint fault database is collected and established, and the BP neural network is used for training to obtain the robot neural network fault diagnosis model. The fault diagnosis model can output the joint fault of the input end pose data. And we analyzed the influence of different joint angle errors and different training sets on the accuracy of joint fault diagnosis of the robot. The results show that when the sampling frequency is 250 Hz, the simulation result of joint fault diagnosis accuracy with the fault degree of 0.5° is 99.17%, and the experimental result is 97.87%. Compared with traditional data-driven methods, it has higher accuracy and diagnostic efficiency, and compared with existing machine learning methods, it also achieves a high accuracy while reducing the network complexity. The effectiveness of the BP neural network robot joint fault diagnosis method is verified by experiments.