We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.
Methods
The study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.
Results
Two hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.
Conclusions
We predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
We fabricated highly transparent and high haze ZnO:Al film for front TCO of amorphous and microcrystalline silicon solar cells. We have sputtered ZnO:Al film of 1.3 μm on the thin seed layer of about 60nm which was previously sputtered on the glass substrate by using 4% dilution of oxygen to argon gas. The ZnO:Al film grown on the seed layer had much higher crystalline phase than one without any seed layer. Our bi-layer ZnO:Al film showed low resistivity of 2.66×10-4 Ω•cm and sheet resistance of 2.08 Ω/⇐ while conventional ZnO:Al film showed resistivity of 3.24×10-4 Ω•cm and sheet resistance of 2.46 Ω/⇐. After surface texturing by 0.5% HCl wet-chemical etching, the transmittance of ZnO:Al film was increased from 83.7% to 88.1% at wavelength of 550nm through the seed layer. Also the transmittance at 800nm was increased from 82.3% to 88.9%. Especially, haze values of the ZnO:Al film were drastically increased from 58.7% to 90.6% at wavelength of 550nm by employing the seed layer. Also haze values at 800nm were increased from 22.1% to 68.1%. It is expected that the seed layer method to improve the quality of ZnO:Al film will contribute to an increase of solar cell efficiency due to the high capability of light trapping and low electrical resistivity.
The ultrafine titanium carbonitride particles (TiC0.5N0.5) with 100 nm in mean size was successfully synthesized by nitridation treatment at ordinary temperatures, 1373∼1473 K of the nanostructured half-stoichiometric titanium carbide (TiC0.5) particles, which were produced by the magnesium reduction of gaseous TiCl4+1/4C2Cl4. In addition, the nitrogen stability for the produced titanium carbonitride particles at various temperatures and vacuum conditions was investigated experimentally and compared with values calculated by an ideal solution model.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.