For any prime number p, let Γn, p denote the congruence subgroup of SLn(ℤ) of level p, i.e. the kernel of the surjective homomorphism fp: SLn(ℤ) → SLn(p) induced by the reduction mod p (Fp is the field with p elements). We define
using upper left inclusions Γn, p ↪ Γn+1, p. Recall that the groups Γn, p are homology stable with M-coefficients, for instance if M = ℚ, ℤ[1/p], or ℤ/q with q prime and q ╪ p: Hi(Γn, p; M) ≅ Hi(Γp; M) for n ≥ 2i + 5 from [7] (but the homology stability fails if M = ℤ or ℤ/p).