We study the local topological zeta function associated to a complex function that is holomorphic at the origin of $\mathbb{C}^2$ (respectively $\mathbb{C}^3$). We determine all possible poles less than −1/2 (respectively −1). On $\mathbb{C}^2$ our result is a generalization of the fact that the log canonical threshold is never in ]5/6,1[. Similar statements are true for the motivic zeta function.