We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The COVID-19 pandemic has seen health systems adapt and change in response to local and international experiences. This paper describes the experiences and learnings by the Central Adelaide Local Health Network (CALHN) in managing a campaign style, novel public health disaster response.
BACKGROUND
Disaster preparedness has focussed on acute impact, mass casualty incidents. In early 2020 CALHNs largest hospital the Royal Adelaide Hospital (RAH) was appointed as the state primary COVID-19 adult receiving hospital. Between the period of 1st February 2020 when the first COVID-19 positive patient was admitted, through to 31st December 2020 the RAH had admitted 146 inpatients with COVID-19, 118 admitted to our hospital in the home service, 18 patients admitted to Intensive Care and four patients died whilst inpatients. During this time CALHN has sustained an active (physical and virtual) Network Incident Command Centre (NICC) supported by a Network Incident Management Team (NIMT).
RESULTS
This paper describes our key lessons learnt in relation to the management of a campaign style disaster response including the importance of disaster preparedness, fatigue management and communication. Also described were the challenges of operating in a command model and the role of exercising and education and an overview of our operating rhythm, how we built capability and lessons management.
CONCLUSION
Undertaking a longer duration disaster response, relating to the COVID-19 pandemic has shown that whilst traditional disaster principles still are important there are many nuances that need to be considered to retain a proportionate response. Our key lessons have revolved around the key tenants of disaster management, communication, capability, and governance.
Heterogeneous roughness in the form of streamwise aligned strips is known to generate large scale secondary motions under turbulent flow conditions that can induce the intriguing feature of larger flow rates above rough than smooth surface parts. The hydrodynamical definition of a surface roughness includes a large scale separation between the roughness height and the boundary layer thickness which is directly related to the fact that the drag of a laminar flow is not altered by the presence of roughness. Existing simplified approaches for direct numerical simulation of roughness strips do not fulfil this requirement of an unmodified laminar base flow compared with a smooth wall reference. It is shown that disturbances induced in a modified laminar base flow can trigger large-scale motions with resemblance to turbulent secondary flow. We propose a simple roughness model that allows us to capture the particular features of turbulent secondary flow without impacting the laminar base flow. The roughness model is based on the prescription of a spanwise slip length, a quantity that can directly be translated into the Hama roughness function for a homogeneous rough surface. The heterogeneous application of the slip-length boundary condition results in very good agreement with existing experimental data in terms of the secondary flow topology. In addition, the proposed modelling approach allows us to quantitatively evaluate the drag increasing contribution of the secondary flow. Both the secondary flow itself and the related drag increase reveal a very small dependence on the gradient of the transition between rough and smooth surface parts only. Interestingly, the observed drag increase due to secondary flows above the modelled roughness is significantly smaller than the one previously reported for roughness resolving simulations. We hypothesise that this difference arises from the fact that roughness resolving simulations cannot truly fulfil the requirement of large scale separation.
Air dispersal of respiratory viruses other than SARS-CoV-2 has not been systematically reported. The incidence and factors associated with air dispersal of respiratory viruses are largely unknown.
Methods:
We performed air sampling by collecting 72,000 L of air over 6 hours for pediatric and adolescent patients infected with parainfluenza virus 3 (PIF3), respiratory syncytial virus (RSV), rhinovirus, and adenovirus. The patients were singly or 2-patient cohort isolated in airborne infection isolation rooms (AIIRs) from December 3, 2021, to January 26, 2022. The viral load in nasopharyngeal aspirates (NPA) and air samples were measured. Factors associated with air dispersal were investigated and analyzed.
Results:
Of 20 singly isolated patients with median age of 30 months (range, 3 months–15 years), 7 (35%) had air dispersal of the viruses compatible with their NPA results. These included 4 (40%) of 10 PIF3-infected patients, 2 (66%) of 3 RSV-infected patients, and 1 (50%) of 2 adenovirus-infected patients. The mean viral load in their room air sample was 1.58×103 copies/mL. Compared with 13 patients (65%) without air dispersal, these 7 patients had a significantly higher mean viral load in their NPA specimens (6.15×107 copies/mL vs 1.61×105 copies/mL; P < .001). Another 14 patients were placed in cohorts as 7 pairs infected with the same virus (PIF3, 2 pairs; RSV, 3 pairs; rhinovirus, 1 pair; and adenovirus, 1 pair) in double-bed AIIRs, all of which had air dispersal. The mean room air viral load in 2-patient cohorts was significantly higher than in rooms of singly isolated patients (1.02×104 copies/mL vs 1.58×103 copies/mL; P = .020).
Conclusion:
Air dispersal of common respiratory viruses may have infection prevention and public health implications.
Cardiovascular disease (CVD) is the most common non-communicable disease occurring globally. Although previous literature have provided useful insights on the important role that diet play in CVD prevention and treatment, understanding the causal role of diets is a difficult task considering inherent and introduced weaknesses of observational (e.g., not properly addressing confounders and mediators) and experimental research designs (e.g., not appropriate or well-designed). In this narrative review, we organised current evidence linking diet, as well as conventional and emerging physiological risk factors with CVD risk, incidence and mortality in a series of diagrams. The diagrams presented can aid causal inference studies as they provide a visual representation of the types of studies underlying the associations between potential risk markers/factors for CVD. This may facilitate the selection of variables to be considered and the creation of analytical models. Evidence depicted in the diagrams was systematically collected from studies included in the British Nutrition Task Force report on Diet and CVD and database searches, including Medline and Embase. Although several markers and disorders linked to conventional and emerging risk factors for CVD were identified, the causal link between many remains unknown. There is a need to address the multifactorial nature of CVD and the complex interplay between conventional and emerging risk factors with natural and built environments, while bringing the life course and the role of additional environmental factors into the spotlight.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
An experimental study of particle–vortex interactions has been undertaken in suspensions with volume fractions up to $\Phi =20\,\%$. Time-resolved particle image velocimetry measurements using a refractive index matching technique were performed to characterize the formation and evolution of vortex rings in both unconfined and confined configurations. It is shown that vortex rings in dense suspensions are more diffuse, which results in larger vortex cores and lower maximum vorticity. Furthermore, these vortex rings remain stable during their evolution, whereby the primary vortex breakdown and the formation of secondary vortices are inhibited. Although similar to vortex rings generated at lower Reynolds numbers in pure water, further results demonstrate that the vortex-ring circulation and non-dimensional vortex-core radius in dense suspensions remain higher than those in pure water at the same equivalent Reynolds number. Thus, the modification of vortex-ring behaviour in dense suspensions cannot be described solely through a variation in the effective viscosity. Finally, unlike in pure water, the confinement does not impact the non-dimensional vortex-core radius, vortex-ring circulation and maximum vorticity in dense suspensions. This unusual result demonstrates that the dynamics of vortex rings in dense suspensions are strongly insensitive to the effect of confinement.
This paper reports the recent development of a full-scale particle-in-cell (PIC) simulation package highlighting an efficient electro-statics (ES)-PIC implementation for spacecraft charging problems. Numerical simulations are crucial in studying plasma flows because analytical solutions are rare, and experiments are expensive. There are many types of plasma flow that need various numerical methods for efficient and accurate simulations; as such, how to implement and organize those different methods into one comprehensive simulation package is challenging. This work adopted several modern software design patterns and developed a versatile package that includes various PIC schemes. This package has an open architecture, clean interfaces with both serial and parallel simulation capabilities. Two benchmark test cases are included to demonstrate the capabilities of this package. Then two plasma flows around a positively charged probe are simulated, and the results are discussed. The simulation results are consistent with past simulation results, and new insights are obtained. This work can lead to the development and organization of more sophisticated plasma simulation solvers in the future.
Drawing upon new evidence emerging from Kenya's Cherangani Hills, this research project furthers current understanding of the archaeology of Late Iron Age forest-dwelling communities in East Africa, focusing on a series of intriguing earthworks deep inside forest environments that are reminiscent of the ‘Sirikwa’ tradition.
Freshwater habitats in China are potentially suitable for invasive alien turtle species and, consequently, raising turtles in aquaculture facilities and the trade in turtles this supplies pose risks to habitats and native wetland communities when exotic turtles escape or are released deliberately. Online trade (e-commerce) is making an increasing contribution to turtle sales in China, seemingly driving demand and thus potentially exacerbating the risk of release. We document the scale and spatial pattern of online sales of non-native turtles over 90 days on China's Taobao.com e-commerce site. The majority of sales were in the ecologically sensitive middle and lower Yangtze river basin (82.35% of > 840,000 slider turtles Trachemys scripta elegans, and 68.26% of > 100,000 snapping turtles, Chelydridae spp.). These species are native to the Americas. Concurrently, over 2008–2018, we found 104 mentions of feral turtle issues listed on Baidu News where, among the 53 prefectures mentioned, issues with invasive turtle populations also focused predominantly in the middle and lower Yangtze river basin. Although circumstantial, this association suggests that the substantial online sale of alien turtles could be having detrimental effects in China's Yangtze river basin. It is important to safeguard these wetland habitats, which are of global importance, by improving policies for detecting and regulating invasive alien turtle issues and by warning consumers about the ecological hazard of their purchases.
Wildlife is an essential component of all ecosystems. Most places in the globe do not have local, timely information on which species are present or how their populations are changing. With the arrival of new technologies, camera traps have become a popular way to collect wildlife data. However, data collection has increased at a much faster rate than the development of tools to manage, process and analyse these data. Without these tools, wildlife managers and other stakeholders have little information to effectively manage, understand and monitor wildlife populations. We identify four barriers that are hindering the widespread use of camera trap data for conservation. We propose specific solutions to remove these barriers integrated in a modern technology platform called Wildlife Insights. We present an architecture for this platform and describe its main components. We recognize and discuss the potential risks of publishing shared biodiversity data and a framework to mitigate those risks. Finally, we discuss a strategy to ensure platforms like Wildlife Insights are sustainable and have an enduring impact on the conservation of wildlife.
The initial classic Fontan utilising a direct right atrial appendage to pulmonary artery anastomosis led to numerous complications. Adults with such complications may benefit from conversion to a total cavo-pulmonary connection, the current standard palliation for children with univentricular hearts.
Methods:
A single institution, retrospective chart review was conducted for all Fontan conversion procedures performed from July, 1999 through January, 2017. Variables analysed included age, sex, reason for Fontan conversion, age at Fontan conversion, and early mortality or heart transplant within 1 year after Fontan conversion.
Results:
A total of 41 Fontan conversion patients were identified. Average age at Fontan conversion was 24.5 ± 9.2 years. Dominant left ventricular physiology was present in 37/41 (90.2%) patients. Right-sided heart failure occurred in 39/41 (95.1%) patients and right atrial dilation was present in 33/41 (80.5%) patients. The most common causes for Fontan conversion included atrial arrhythmia in 37/41 (90.2%), NYHA class II HF or greater in 31/41 (75.6%), ventricular dysfunction in 23/41 (56.1%), and cirrhosis or fibrosis in 7/41 (17.1%) patients. Median post-surgical follow-up was 6.2 ± 4.9 years. Survival rates at 30 days, 1 year, and greater than 1-year post-Fontan conversion were 95.1, 92.7, and 87.8%, respectively. Two patients underwent heart transplant: the first within 1 year of Fontan conversion for heart failure and the second at 5.3 years for liver failure.
Conclusions:
Fontan conversion should be considered early when atrial arrhythmias become common rather than waiting for severe heart failure to ensue, and Fontan conversion can be accomplished with an acceptable risk profile.
Anthropogenic habitat alteration and invasive species are threatening carnivores globally. Understanding the impact of these factors is critical for creating localized, effective conservation programmes. Madagascar's Eupleridae have been described as the least studied and most threatened group of carnivores. We investigated the effects of habitat degradation and the presence of people and exotic species on the modelled occupancy of the endemic fosa Cryptoprocta ferox, conducting camera-trap surveys in two western deciduous forests, Ankarafantsika National Park and Andranomena Special Reserve. Our results indicated no clear patterns between habitat degradation and fosa occupancy but a strong negative association between cats Felis sp. and fosas. Cat occupancy was negatively associated with birds and positively associated with contiguous forest and narrow trails. In contrast, dog Canis lupus familiaris occupancy was best predicted by wide trails, degraded forest and exotic civets. Our results suggest fosas are capable of traversing degraded landscapes and, in the short term, are resilient to contiguous forest disturbance. However, high occupancy of cats and dogs in the landscape leads to resource competition through prey exploitation and interference, increasing the risk of transmission of potentially fatal diseases. Management strategies for exotic carnivores should be considered, to reduce the widespread predation of endemic species and the transmission of disease.
We reviewed all patients who were supported with extracorporeal membrane oxygenation and/or ventricular assist device at our institution in order to describe diagnostic characteristics and assess mortality.
Methods
A retrospective cohort study was performed including all patients supported with extracorporeal membrane oxygenation and/or ventricular assist device from our first case (8 October, 1998) through 25 July, 2016. The primary outcome of interest was mortality, which was modelled by the Kaplan–Meier method.
Results
A total of 223 patients underwent 241 extracorporeal membrane oxygenation runs. Median support time was 4.0 days, ranging from 0.04 to 55.8 days, with a mean of 6.4±7.0 days. Mean (±SD) age at initiation was 727.4 days (±146.9 days). Indications for extracorporeal membrane oxygenation were stratified by primary indication: cardiac extracorporeal membrane oxygenation (n=175; 72.6%) or respiratory extracorporeal membrane oxygenation (n=66; 27.4%). The most frequent diagnosis for cardiac extracorporeal membrane oxygenation patients was hypoplastic left heart syndrome or hypoplastic left heart syndrome-related malformation (n=55 patients with HLHS who underwent 64 extracorporeal membrane oxygenation runs). For respiratory extracorporeal membrane oxygenation, the most frequent diagnosis was congenital diaphragmatic hernia (n=22). A total of 24 patients underwent 26 ventricular assist device runs. Median support time was 7 days, ranging from 0 to 75 days, with a mean of 15.3±18.8 days. Mean age at initiation of ventricular assist device was 2530.8±660.2 days (6.93±1.81 years). Cardiomyopathy/myocarditis was the most frequent indication for ventricular assist device placement (n=14; 53.8%). Survival to discharge was 42.2% for extracorporeal membrane oxygenation patients and 54.2% for ventricular assist device patients. Kaplan–Meier 1-year survival was as follows: all patients, 41.0%; extracorporeal membrane oxygenation patients, 41.0%; and ventricular assist device patients, 43.2%. Kaplan–Meier 5-year survival was as follows: all patients, 39.7%; extracorporeal membrane oxygenation patients, 39.7%; and ventricular assist device patients, 43.2%.
Conclusions
This single-institutional 18-year review documents the differential probability of survival for various sub-groups of patients who require support with extracorporeal membrane oxygenation or ventricular assist device. The indication for mechanical circulatory support, underlying diagnosis, age, and setting in which cannulation occurs may affect survival after extracorporeal membrane oxygenation and ventricular assist device. The Kaplan–Meier analyses in this study demonstrate that patients who survive to hospital discharge have an excellent chance of longer-term survival.
In the last decade observations have been able to probe the evolution of the galaxy luminosity function, in particular showing a variation of its faint-end with redshift. We employ the data of the Cluster-EAGLE project, a set of cosmological, hydrodynamical zoom-in simulations of 30 galaxy clusters, to study the evolution of the galaxy luminostity functions in clusters with redshift. We compile a catalogue of simulated galaxies’ luminosities in the SDSS bands using the E-MILES spectra database, and taking into account dust attenuation. Stacked luminosity functions present little evolution with redshift of the faint-end slope from z=3.5 to z=0, regardless of the cluster mass.