This work reports on the performance of different Hafmiun aluminate (HfAlOx)-based interpoly dielectrics (IPD) for future sub-45nm nonvolatile memory (NVM) technologies. The impact of the thermal budget during the fabrication process is studied. The good retention and large operating window shown by this material, can be compromised by a high temperature activation anneal (AA) after the gate deposition. The AA step may induce phase segregation of the HfAlOx and outdiffusion of the Hf (Al) towards the floating gate/IPD and IPD/gate interfaces and subsequent formation of Hf (Al) silicates. These findings are supported by the low field leakage analysis, which shows large device to device dispersions. However, the effect of the spike anneal can be minimized if the HfAlOx layer is crystallized prior to the AA. Devices with polysilicon or TiN gate are compared in terms of memory performance and reliability.