We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Electroconvulsive therapy (ECT) is a fast-acting intervention for major depressive disorder. Previous studies indicated neurotrophic effects following ECT that might contribute to changes in white matter brain structure. We investigated the influence of ECT in a non-randomized prospective study focusing on white matter changes over time.
Methods
Twenty-nine severely depressed patients receiving ECT in addition to inpatient treatment, 69 severely depressed patients with inpatient treatment (NON-ECT) and 52 healthy controls (HC) took part in a non-randomized prospective study. Participants were scanned twice, approximately 6 weeks apart, using diffusion tensor imaging, applying tract-based spatial statistics. Additional correlational analyses were conducted in the ECT subsample to investigate the effects of seizure duration and therapeutic response.
Results
Mean diffusivity (MD) increased after ECT in the right hemisphere, which was an ECT-group-specific effect. Seizure duration was associated with decreased fractional anisotropy (FA) following ECT. Longitudinal changes in ECT were not associated with therapy response. However, within the ECT group only, baseline FA was positively and MD negatively associated with post-ECT symptomatology.
Conclusion
Our data suggest that ECT changes white matter integrity, possibly reflecting increased permeability of the blood–brain barrier, resulting in disturbed communication of fibers. Further, baseline diffusion metrics were associated with therapy response. Coherent fiber structure could be a prerequisite for a generalized seizure and inhibitory brain signaling necessary to successfully inhibit increased seizure activity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.