We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess the utility of an automated, statistically-based outbreak detection system to identify clusters of hospital-acquired microorganisms.
Design:
Multicenter retrospective cohort study.
Setting:
The study included 43 hospitals using a common infection prevention surveillance system.
Methods:
A space–time permutation scan statistic was applied to hospital microbiology, admission, discharge, and transfer data to identify clustering of microorganisms within hospital locations and services. Infection preventionists were asked to rate the importance of each cluster. A convenience sample of 10 hospitals also provided information about clusters previously identified through their usual surveillance methods.
Results:
We identified 230 clusters in 43 hospitals involving Gram-positive and -negative bacteria and fungi. Half of the clusters progressed after initial detection, suggesting that early detection could trigger interventions to curtail further spread. Infection preventionists reported that they would have wanted to be alerted about 81% of these clusters. Factors associated with clusters judged to be moderately or highly concerning included high statistical significance, large size, and clusters involving Clostridioides difficile or multidrug-resistant organisms. Based on comparison data provided by the convenience sample of hospitals, only 9 (18%) of 51 clusters detected by usual surveillance met statistical significance, and of the 70 clusters not previously detected, 58 (83%) involved organisms not routinely targeted by the hospitals’ surveillance programs. All infection prevention programs felt that an automated outbreak detection tool would improve their ability to detect outbreaks and streamline their work.
Conclusions:
Automated, statistically-based outbreak detection can increase the consistency, scope, and comprehensiveness of detecting hospital-associated transmission.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.