We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reissued in the Cambridge Mathematical Library this classic book outlines the theory of thermodynamic formalism which was developed to describe the properties of certain physical systems consisting of a large number of subunits. It is aimed at mathematicians interested in ergodic theory, topological dynamics, constructive quantum field theory, the study of certain differentiable dynamical systems, notably Anosov diffeomorphisms and flows. It is also of interest to theoretical physicists concerned with the conceptual basis of equilibrium statistical mechanics. The level of the presentation is generally advanced, the objective being to provide an efficient research tool and a text for use in graduate teaching. Background material on mathematics has been collected in appendices to help the reader. Extra material is given in the form of updates of problems that were open at the original time of writing and as a new preface specially written for this new edition by the author.
Let the vector field on M define a flow (fat) with an Axiom A attractor Λa depending continuously on a∈(−ϵ,ϵ). Let ρa be the SRB measure on Λa for (fat). If , then is on (−ϵ,ϵ) and dρa(A)/da is the limit when ω→0 with Imω>0 of
The formalism of equilibrium statistical mechanics — which we shall call thermodynamic formalism — has been developed since G. W. Gibbs to describe the properties of certain physical systems. These are systems consisting of a large number of subunits (typically 1027) like the molecules of one liter of air or water. While the physical justification of the thermodynamic formalism remains quite insufficient, this formalism has proved remarkably successful at explaining facts.
In recent years it has become clear that, underlying the thermodynamic formalism, there are mathematical structures of great interest: the formalism hints at the good theorems, and to some extent at their proofs. Outside of statistical mechanics proper, the thermodynamic formalism and its mathematical methods have now been used extensively in constructive quantum field theory and in the study of certain differentiable dynamical systems (notably Anosov diffeomorphisms and flows). In both cases the relation is at an abstract mathematical level, and fairly inobvious at first sight. It is evident that the study of the physical world is a powerful source of inspiration for mathematics. That this inspiration can act in such a detailed manner is a more remarkable fact, which the reader will interpret according to his own philosophy.
The main physical problem which equilibrium statistical mechanics tries to clarify is that of phase transitions. When the temperature of water is lowered, why do its properties change first smoothly, then suddenly as the freezing point is reached?