We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The spread of the Zika virus (ZIKV) in the Americas led to large outbreaks across the region and most of the Southern hemisphere. Of greatest concern were complications following acute infection during pregnancy. At the beginning of the outbreak, the risk to unborn babies and their clinical presentation was unclear. This report describes the methods and results of the UK surveillance response to assess the risk of ZIKV to children born to returning travellers. Established surveillance systems operating within the UK – the paediatric and obstetric surveillance units for rare diseases, and national laboratory monitoring – enabled rapid assessment of this emerging public health threat. A combined total of 11 women experiencing adverse pregnancy outcomes after possible ZIKV exposure were reported by the three surveillance systems; five miscarriages, two intrauterine deaths and four children with clinical presentations potentially associated with ZIKV infection. Sixteen women were diagnosed with ZIKV during pregnancy in the UK. Amongst the offspring of these women, there was unequivocal laboratory evidence of infection in only one child. In the UK, the number and risk of congenital ZIKV infection for travellers returning from ZIKV-affected countries is very small.
Although we find Gangestad & Simpson's argument intriguing, we question some of its underlying assumptions, including: (1) that fluctuating asymmetry (FA) is consistently heritable; (2) that symmetry is driving the effects; (3) that use of parametric tests with FA is appropriate; and (4) that a short-term mating strategy produces more offspring than a long-term strategy.
A multistep technique has been developed for the generation of metallic/alloy nanoparticles coated with amorphous silica. As a proof of concept, an inert-gas blown-arc geometry was used to create nanoparticles from a bulk nickel source, and silica coating formation was accomplished via tetraethyloxysilane (TEOS) decomposition over the nanoparticles in an adjacent chemical vapor deposition chamber. The composite particles exhibit resistance to hydrochloric acid attack over extended times, thereby confirming the protective nature of the silica coating, and magnetic measurements indicate a superparamagnetic transition temperature of 41 K. TEOS flow rate was found to have a profound effect on particle morphology, and individually coated dispersed particles were observed for the intermediate flow rate studied. These results, combined with the well-established field of silica functionalization, offer the possibility that a variety of industrially significant coated magnetic nanostructures may be synthesized with this versatile approach.
Graphite encapsulated nanocrystals produced by a low carbon tungsten arc were analyzed to determine their chemistry, crystallography, and nanostructural morphology. Metallic nanocrystals of Fe, Co, and Ni are in the face-centered cubic (fcc) phase, and no trace of the bulk equilibrium phases of body-centered cubic (Fe) and hexagonal close-packed (Co) were found. Various analytical techniques have revealed that the encased nanocrystals are pure metal (some carbide was found in the case of Fe), ferromagnetic, and generally spherical. The nanocrystals are protected by turbostratic graphite, regardless of the size of the nanocrystals. The turbostratic graphite coating is usually made up of between 2 and 10 layers. No trace of any unwanted elements (e.g., oxygen) was found. The low carbon: metal ratio arc technique is a relatively clean process for the production of graphite encapsulated nanocrystals.
An optimized chemical vapor infiltration (CVI) process has conditions that promote complete densification at the fastest allowable reaction rate. In order to help define optimum conditions, a model has been developed to simulate the CVI of a fibrous specimen for determining the effects of temperature gradients along with the other processing parameters such as pressure, size, chemistry, rate of reaction, and porosity on the resulting deposition profiles. This model simulates the deposition of alumina matrix within fibers wrapped around a tube. This symmetry reduces the model to a simple one-dimensional problem. Parameters for transport properties, calculated using a local microstructure model, are used in this macroscopic model. The model is applied as a guideline for choosing optimum conditions for producing a dense ceramic matrix composite. From this model, process diagrams are constructed that can help an experimentalist to choose the best conditions for the CVI process using temperature gradients.