We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Multicentre research databases can provide insights into healthcare processes to improve outcomes and make practice recommendations for novel approaches. Effective audits can establish a framework for reporting research efforts, ensuring accurate reporting, and spearheading quality improvement. Although a variety of data auditing models and standards exist, barriers to effective auditing including costs, regulatory requirements, travel, and design complexity must be considered.
Materials and methods:
The Congenital Cardiac Research Collaborative conducted a virtual data training initiative and remote source data verification audit on a retrospective multicentre dataset. CCRC investigators across nine institutions were trained to extract and enter data into a robust dataset on patients with tetralogy of Fallot who required neonatal intervention. Centres provided de-identified source files for a randomised 10% patient sample audit. Key auditing variables, discrepancy types, and severity levels were analysed across two study groups, primary repair and staged repair.
Results:
Of the total 572 study patients, data from 58 patients (31 staged repairs and 27 primary repairs) were source data verified. Amongst the 1790 variables audited, 45 discrepancies were discovered, resulting in an overall accuracy rate of 97.5%. High accuracy rates were consistent across all CCRC institutions ranging from 94.6% to 99.4% and were reported for both minor (1.5%) and major discrepancies type classifications (1.1%).
Conclusion:
Findings indicate that implementing a virtual multicentre training initiative and remote source data verification audit can identify data quality concerns and produce a reliable, high-quality dataset. Remote auditing capacity is especially important during the current COVID-19 pandemic.
The prevalence of attention deficit/hyperactivity disorder in the general population is common and is now diagnosed in 4%–12% of children. Children with CHD have been shown to be at increased risk for attention deficit/hyperactivity disorder. Case reports have led to concern regarding the use of attention deficit/hyperactivity disorder medications in children with underlying CHD. We hypothesised that medical therapy for patients with CHD and attention deficit/hyperactivity disorder is safe.
Methods:
A single-centre, retrospective chart review was performed evaluating for adverse events in patients aged 4–21 years with CHD who received attention deficit/hyperactivity disorder therapy over a 5-year span. Inclusion criteria were a diagnosis of CHD and concomitant medical therapy with amphetamines, methylphenidate, or atomoxetine. Patients with trivial or spontaneously resolved CHD were excluded from analysis.
Results:
In 831 patients with CHD who received stimulants with a mean age of 12.9 years, there was only one adverse cardiovascular event identified. Using sensitivity analysis, our median follow-up time was 686 days and a prevalence rate of 0.21% of adverse events. This episode consisted of increased frequency of supraventricular tachycardia in a patient who had this condition prior to initiation of medical therapy; the condition improved with discontinuation of attention deficit/hyperactivity disorder therapy.
Conclusion:
The incidence of significant adverse cardiovascular events in our population was similar to the prevalence of supraventricular tachycardia in the general population. Our single-centre experience demonstrated no increased risk in adverse events related to medical therapy for children with attention deficit/hyperactivity disorder and underlying CHD. Further population-based studies are indicated to validate these findings.
Transcatheter right ventricle decompression in neonates with pulmonary atresia and intact ventricular septum is technically challenging, with risk of cardiac perforation and death. Further, despite successful right ventricle decompression, re-intervention on the pulmonary valve is common. The association between technical factors during right ventricle decompression and the risks of complications and re-intervention are not well described.
Methods
This is a multicentre retrospective study among the participating centres of the Congenital Catheterization Research Collaborative. Between 2005 and 2015, all neonates with pulmonary atresia and intact ventricular septum and attempted transcatheter right ventricle decompression were included. Technical factors evaluated included the use and characteristics of radiofrequency energy, maximal balloon-to-pulmonary valve annulus ratio, infundibular diameter, and right ventricle systolic pressure pre- and post-valvuloplasty (BPV). The primary end point was cardiac perforation or death; the secondary end point was re-intervention.
Results
A total of 99 neonates underwent transcatheter right ventricle decompression at a median of 3 days (IQR 2–5) of age, including 63 patients by radiofrequency and 32 by wire perforation of the pulmonary valve. There were 32 complications including 10 (10.5%) cardiac perforations, of which two resulted in death. Cardiac perforation was associated with the use of radiofrequency (p=0.047), longer radiofrequency duration (3.5 versus 2.0 seconds, p=0.02), and higher maximal radiofrequency energy (7.5 versus 5.0 J, p<0.01) but not with patient weight (p=0.09), pulmonary valve diameter (p=0.23), or infundibular diameter (p=0.57). Re-intervention was performed in 36 patients and was associated with higher post-intervention right ventricle pressure (median 60 versus 50 mmHg, p=0.041) and residual valve gradient (median 15 versus 10 mmHg, p=0.046), but not with balloon-to-pulmonary valve annulus ratio, atmospheric pressure used during BPV, or the presence of a residual balloon waist during BPV. Re-intervention was not associated with any right ventricle anatomic characteristics, including pulmonary valve diameter.
Conclusion
Technical factors surrounding transcatheter right ventricle decompression in pulmonary atresia and intact ventricular septum influence the risk of procedural complications but not the risk of future re-intervention. Cardiac perforation is associated with the use of radiofrequency energy, as well as radiofrequency application characteristics. Re-intervention after right ventricle decompression for pulmonary atresia and intact ventricular septum is common and relates to haemodynamic measures surrounding initial BPV.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.