Online purchasing will be unavailable between 08:00-12:00 GMT on Sunday 12th February 2023 due to essential maintenance work. Please accept our apologies for any inconvenience caused.
We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is generally accepted that high-oleic crops have at least 70% oleate. As compared to their normal-oleic counterparts, oil and food products made from high-oleic peanut have better keeping quality and are much healthier. Therefore, high-oleic peanut is well recognized by processors and consumers. However, owing to the limited availability of high-oleic donors, most present-day high-oleic peanut varietal releases merely have F435 type FAD2 mutations. Through screening of a mutagenized peanut population of 15L46, a high-yielding peanut line with desirable elliptical oblong large seeds, using near infrared model for predicting oleate content in individual single seeds, high-oleic peanut mutants were identified. Sequencing FAD2A and FAD2B of the mutants along with the wild type revealed that these mutants possessed G448A FAD2A (F435 type FAD2A mutation) and G558A FAD2B (non-F435 type FAD2B mutation). Expression of the wild and mutated type FAD2B in yeast verified that the functional mutation contributed to the high-oleic phenotype in these mutants. The mutants provided additional high-oleic donors to peanut quality improvement.
Elucidating fundamental design principles by means of accurate trade-off analysis of relevant design options using suitable mathematical tools, this is the first book to provide a coherent treatment of transmission technologies essential to current and future wireless systems. Develop in-depth knowledge of the capabilities and limitations of wireless transmission technologies in supporting high-quality wireless transmission services, and foster a thorough understanding of various design trade-offs, to help identify an ideal choice for your own application requirements. Key technologies such as advanced diversity combining, multi-user scheduling, multi-user multi-antenna transmission, relay transmission, and cognitive radio are examined, making this an essential resource for senior graduate students, researchers, and engineers working in wireless communications.