We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Antibiotic use varies widely between hospitals, but the influence of antimicrobial stewardship programs (ASPs) on this variability is not known. We aimed to determine the key structural and strategic aspects of ASPs associated with differences in risk-adjusted antibiotic utilization across facilities.
Design
Observational study of acute-care hospitals in Ontario, Canada
Methods
A survey was sent to hospitals asking about both structural (8 elements) and strategic (32 elements) components of their ASP. Antibiotic use from hospital purchasing data was acquired for January 1 to December 31, 2014. Crude and adjusted defined daily doses per 1,000 patient days, accounting for hospital and aggregate patient characteristics, were calculated across facilities. Rate ratios (RR) of defined daily doses per 1,000 patient days were compared for hospitals with and without each antimicrobial stewardship element of interest.
Results
Of 127 eligible hospitals, 73 (57%) participated in the study. There was a 7-fold range in antibiotic use across these facilities (min, 253 defined daily doses per 1,000 patient days; max, 1,872 defined daily doses per 1,000 patient days). The presence of designated funding or resources for the ASP (RRadjusted, 0·87; 95% CI, 0·75–0·99), prospective audit and feedback (RRadjusted, 0·80; 95% CI, 0·67–0·96), and intravenous-to-oral conversion policies (RRadjusted, 0·79; 95% CI, 0·64–0·99) were associated with lower risk-adjusted antibiotic use.
Conclusions
Wide variability in antibiotic use across hospitals may be partially explained by both structural and strategic ASP elements. The presence of funding and resources, prospective audit and feedback, and intravenous-to-oral conversion should be considered priority elements of a robust ASP.
The relationship between hospital antibiotic use and antibiotic resistance is poorly understood. We evaluated the association between antibiotic utilization and resistance in academic and community hospitals in Ontario, Canada.
METHODS
We conducted a multicenter observational ecological study of 37 hospitals in 2014. Hospital antibiotic purchasing data were used as an indicator of antibiotic use, whereas antibiotic resistance data were extracted from hospital indexes of resistance. Multivariate regression was performed, with antibiotic susceptibility as the primary outcome, antibiotic consumption as the main predictor, and additional covariates of interest (ie, hospital type, laboratory standards, and patient days).
RESULTS
With resistance data representing more than 90,000 isolates, we found the increased antibiotic consumption in defined daily doses per 1,000 patient days (DDDs/1,000 PD) was associated with decreased antibiotic susceptibility for Pseudomonas aeruginosa (−0.162% per DDD/1,000 PD; P=.119). However, increased antibiotic consumption predicted increased antibiotic susceptibility significantly for Escherichia coli (0.173% per DDD/1,000 PD; P=.005), Klebsiella spp (0.124% per DDD/1,000 PD; P=.004), Enterobacter spp (0.194% per DDD/1,000 PD; P=.003), and Enterococcus spp (0.309% per DDD/1,000 PD; P=.001), and nonsignificantly for Staphylococcus aureus (0.012% per DDD/1,000 PD; P=.878). Hospital type (P=.797) and laboratory standard (P=.394) did not significantly predict antibiotic susceptibility, while increased hospital patient days generally predicted increased organism susceptibility (0.728% per 10,000 PD; P<.001).
CONCLUSIONS
We found that hospital-specific antibiotic usage was generally associated with increased, rather than decreased hospital antibiotic susceptibility. These findings may be explained by community origins for many hospital-diagnosed infections and practitioners choosing agents based on local antibiotic resistance patterns.
Infect Control Hosp Epidemiol 2017;38:1457–1463
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.