We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Emotion regulation, as a typical “top-down” emotional self-regulation, has been shown to play an important role in children’s oppositional defiant disorder (ODD) development. However, the association between other self-regulation subcomponents and the ODD symptom network remains unclear. Meanwhile, while there are gender differences in both self-regulation and ODD, few studies have examined whether their relation is moderated by gender. Five hundred and four children (age 6–11 years; 207 girls) were recruited from schools with parents and classroom teachers completing questionnaires and were followed up for assessment six months later. Using moderation network analysis, we analyzed the relation between self-regulation and ODD symptoms, and the moderating role of gender. Self-regulation including emotion regulation, self-control, and emotion lability/negativity had broad bidirectional relations with ODD symptoms. In particular, the bidirectional relations between emotion regulation and ODD3 (Defies) and between emotion lability/negativity and ODD4 (Annoys) were significantly weaker in girls than in boys. Considering the important role of different self-regulation subcomponents in the ODD symptom network, ODD is better conceptualized as a self-regulation disorder. Each ODD symptom is associated with different degrees of impaired “bottom-up” and “top-down” self-regulation, and several of the associations vary by gender.
Cross-linguistic interactions are the hallmark of bilingual development. Theoretical perspectives highlight the key role of cross-linguistic distances and language structure in literacy development. Despite the strong theoretical assumptions, the impact of such bilingualism factors in heritage-language speakers remains elusive given high variability in children's heritage-language experiences. A longitudinal inquiry of heritage-language learners of structurally distinct languages – Spanish–English and Chinese–English bilinguals (N = 181, Mage = 7.57, measured 1.5 years apart) aimed to fill this gap. Spanish–English bilinguals showed stronger associations between morphological awareness skills across their two languages, across time, likely reflecting cross-linguistic similarities in vocabulary and lexical morphology between Spanish and English. Chinese–English bilinguals, however, showed stronger associations between morphological and word reading skills in English, likely reflecting the critical role of morphology in spoken and written Chinese word structure. The findings inform theories of literacy by uncovering the mechanisms by which bilingualism factors influence child literacy development.
Increases in population size are associated with the adoption of Neolithic agricultural practices in many areas of the world, but rapid population growth within the Dingsishan cultural group of southern China pre-dated the arrival of rice and millet farming in this area. In this article, the authors identify starch grains from taros (Colocasia) and yams (Dioscorea) in dental calculus and on food-processing tools from the Dingsishan sites of Huiyaotian and Liyupo (c. 9030–6741 BP). They conclude that the harvesting and processing of these dietary staples supported an Early Holocene population increase in southern East Asia, before the spread of rice and millet farming.
As an important component of prehistoric subsistence, an understanding of bone-working is essential for interpreting the evolution of early complex societies, yet worked bones are rarely systematically collected in China. Here, the authors apply multiple analytical methods to worked bones from the Longshan site of Pingliangtai, in central China, showing that Neolithic bone-working in this area, with cervid as the main raw material, was mature but localised, household-based and self-sufficient. The introduction of cattle in the Late Neolithic precipitated a shift in bone-working traditions but it was only later, in the Bronze Age, that cattle bones were utilised in a specialised fashion and dedicated bone-working industries emerged in urban centres.
We construct an autoregressive moving average (ARMA) model consisting of the history and random effects for the streamwise velocity fluctuation in boundary-layer turbulence. The distance to the wall and the boundary-layer thickness determine the time step and the order of the ARMA model, respectively. Based on the autocorrelation's analytical expression of the ARMA model, we obtain a global analytical expression for the second-order structure function, which asymptotically captures the inertial, dynamic and large-scale ranges. Specifically, the exponential autocorrelation of the ARMA model arises from the autoregressive coefficients and is modified to logarithmic behaviour by the moving-average coefficients. The asymptotic expressions enable us to determine model coefficients by existing parameters, such as the Kolmogorov and the Townsend–Perry constants. A consequent double-log expression for the characteristic length scale is derived and is justified by direct numerical simulation data with $Re_\tau \approx 5200$ and field-measured neutral atmospheric surface layer data with $Re_\tau \sim O(10^6)$ from the Qingtu Lake Observation Array site. This relation is robust because it applies to $Re_\tau$ from $O(10^4)$ to $O(10^6)$, and even when the statistics of natural ASL deviate from those of canonical boundary-layer turbulence, e.g. in the case of imbalance in energy production and dissipation, and when the Townsend–Perry constant deviates from traditional values.
In order to understand the microscopic properties of alkylammonium-intercalated vermiculites, molecular dynamics simulations employing the clayff-CVFF force field were performed to obtain the interlayer structures and dynamics. The layering behavior of alkyl chains was uncovered. With the model used in the present study (1.2 e per unit cell), the alkyl chains formed monolayers with carbon-chain lengths of C6, bilayers from C7 to C10, and pseudo-trimolecular layers from C15 to C18. Intermediate states also existed between bilayer and pseudo-trimolecular layer states from C11 to C14. The ammonium groups had two locations: most ammonium groups were located over the six-member rings (~90%), and the rest above the substitution sites (~10%). The ammonium groups interacted with the vermiculite surface through H bonds between ammonium H atoms and surface O atoms. The ammonium groups were fixed firmly on surfaces and, therefore, had very low mobility. The alkyl chains were slightly more mobile. The similarities and differences between alkylammonium-intercalated vermiculites and smectites were revealed. The layering behaviors of alkyl chains were similar in alkylammonium-intercalated vermiculites and smectites: the alkyl chain behavior was controlled by both the amount of layer charge and the carbon chain length. The distributions of ammonium groups, however, were different, caused by the layer-charge distribution in vermiculites being different from that in smectites. The atomic-level results derived in the present study will be useful for future research into and the applications of organo-vermiculites.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
Aiming to identify the complexing mechanisms of heavy metal cations on edge surfaces of 2:1-type clay minerals, systemic first-principles molecular dynamics (FPMD) simulations were conducted and the microscopic structures and complex free energies were obtained. Taking Cd(II) as a model cation, the structures on both (010) and (110) edges of the complexes were derived for the three possible binding sites (≡SiO, ≡Al(OH)2/≡AlOH≡AlSiO, and vacant sites). The stable complexes adsorbed on the three binding sites on both terminations had similar structures. The free energies of the complexes on (010) edges were calculated by using the constrained FPMD method. The free energies of complexes on the ≡SiO and ≡Al(OH)2 sites were similar and they were both significantly lower than the free energy of the complex on the octahedral vacant site. In association with the concept of high energy site (HES) and low energy site (LES) in the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model, the vacant site was assigned to HES and the other two sites to LES, respectively.
The formation of manganese (Mn) oxides is influenced by environmental conditions and, in some red soils, Mn oxides occur as coatings on the surface of kaolinite particles in the form of colloidal films or fine particles. The present study aimed to explore the types of formation mechanisms of Mn oxide minerals on the surface of kaolinite. Mn oxide minerals synthesized by reducing the Mn in KMnO4 with a divalent Mn salt (MnSO4) were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of various initial molar ratios of Mn2+/Mn7+ (R = 1:0.67, 1:1, 1:2, and 1:4), cationic species (Na+ or Mg2+), synthesis temperatures (30, 60, and 110°C), and amount of added kaolinite (0.25, 0.5, 1.0, 2.0, and 5.0 g) on the formation of Mn oxides were studied. The results showed that Mn oxide mineral types were affected by the initial R value and the background cation. With decreases in the initial R value, the synthesized minerals transformed from cryptomelane to birnessite. The relative mass ratios of kaolinite to Mn oxide were calculated as 1:0.92, 1:0.63, 1:1.15, and 1:1.63. The sodium cation (Na+) had a greater role than Mg2+ in promoting the dissolution–recrystallization of birnessite to cryptomelane. The synthesis temperature had no effect on mineral types, but Mn content increased as temperature increased. When the amount of added kaolinite was increased from 0.25 to 5.0 g, Mn oxide minerals formed gradually and transformed from birnessite to cryptomelane. This work revealed a possible formation process and reaction mechanism on the surface of kaolinite particles in some red soils.
Hong Kong experienced four epidemic waves caused by the ancestral strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2020–2021 and a large Omicron wave in 2022. Few studies have assessed antibacterial prescribing for coronavirus disease 2019 (COVID-19) inpatients throughout the pandemic.
Objectives:
To describe inpatient antibacterial prescribing and explore factors associated with their prescription.
Methods:
Electronic health records of patients with COVID-19 admitted to public hospitals in Hong Kong from 21 January 2020 to 30 September 2022 were used to assess the prevalence and rates of inpatient antibacterial drug use (days of therapy/1,000 patient days [DOT/1,000 PD]). We used multivariable logistic regression to investigate potential associations between patients’ baseline characteristics and disease severity and prescription of an antibacterial drug during hospital admission.
Results:
Among 65,810 inpatients with COVID-19, 54.0% were prescribed antibacterial drugs (550.5 DOT/1,000 PD). Compared to waves 1–2 (46.7%; 246.9 DOT/1,000 PD), the prescriptions were lowest during wave 4 (28.0%; 246.9; odds ratio (OR): 0.39, 95% CI: 0.31–0.49) and peaked in early wave 5 (64.6%; 661.2; 0.82, 0.65–1.03). Older age (≥80 years: OR 2.66, 95% CI, 2.49–2.85; 60–79 years: 1.59, 1.51–1.69, compared with 20–59 years), more severe disease (fatal: 3.64, 3.2–4.16; critical: 2.56, 2.14–3.06, compared with severe), and COVID-19 vaccine doses (two doses: 0.74, 0.69–0.78; three doses: 0.69, 0.64–0.74; four doses: 0.52, 0.44–0.62, compared with unvaccinated) were associated with inpatient antibacterial drug use.
Conclusions:
Antibacterial prescribing changed over time for hospitalized patients with confirmed COVID-19 and was potentially related to patients’ demographics, medical conditions, and COVID-19 vaccination status as well as healthcare capacity during epidemic waves.
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
An 8-week experiment was performed to investigate the influence on growth performance, plasma biochemistry, glucose metabolism and the insulin pathway of supplementation of dietary taurine to a high-carbohydrate diet for grass carp. In this study, fish were fed diets at one of two carbohydrate levels, 31·49 % (positive control) or 38·61 % (T00). The high-carbohydrate basal diet (T00), without taurine, was supplemented with 0·05 % (T05), 0·10 % (T10), 0·15 % (T15) or 0·20 % (T20) taurine, resulting in six isonitrogenous (30·37 %) and isolipidic (2·37 %) experimental diets. The experimental results showed that optimal taurine level improved significantly weight gain, specific growth rate (SGR), feed utilisation, reduced plasma total cholesterol levels, TAG and promoted insulin-like growth factor level. Glucokinase, pyruvate kinase and phosphoenolpyruvate carboxykinase activities showed a quadratic function model with increasing dietary taurine level, while hexokinase, fatty acid synthetase activities exhibited a positive linear trend. Optimal taurine supplementation in high-carbohydrate diet upregulated insulin receptor (Ir), insulin receptor substrate (Irs1), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt1), glycogen synthase kinase 3 β (gs3kβ) mRNA level and downregulated insulin-like growth factor (igf-1), insulin-like growth factor 1 receptor (igf-1R) and Fork head transcription factor 1 (foxo1) mRNA level. The above results suggested that optimal taurine level could improve growth performance, hepatic capacity for glycolipid metabolism and insulin sensitivity, thus enhancing the utilisation of carbohydrates in grass carp. Based on SGR, dietary optimal tributyrin taurine supplementation in grass carp was estimated to be 0·08 %.
In this paper, we consider the friendship paradox in the context of random walks and paths. Among our results, we give an equality connecting long-range degree correlation, degree variability, and the degree-wise effect of additional steps for a random walk on a graph. Random paths are also considered, as well as applications to acquaintance sampling in the context of core-periphery structure.
OBJECTIVES/GOALS: Aim1: To develop a natural language processing (NLP) algorithm to effectively identify statin associated muscle symptoms (SAMS) in patients’electronic health records (EHRs). Aim2: To develop a machine learning model based on clinical features within EHRs that predict the likelihood of SAMS occurrences. METHODS/STUDY POPULATION: A retrospective cohort of adult patients initiated on statins within the Minnesota Fairview Healthcare System EHRs from 2010 to 2020 will be analyzed. NLP-PIER (Patient Information Extraction for Research) platform will be used to search and identify patients who developed SAMS after statin initiation. Manual annotation of clinical notes will be completed to validate the accuracy of identified SAMS cases. Then, a selection of clinical features within the EHRs will be input as predictors for machine learning algorithms development. Select machine learning classifiers will be deployed to generate models for the prediction of SAMS and the best-performing model will be selected based on model performance. RESULTS/ANTICIPATED RESULTS: The expected outcomes include generation of a fine-tuned NLP algorithm that can rigorously identify SAMS occurrences within EHRs. Further, we anticipate having a practical risk model that accurately predicts patients’risks of developing SAMS when taking statins. DISCUSSION/SIGNIFICANCE: The positive and translational impact of our research will be to equip healthcare providers with such informatics tools to improve statin adherence, ultimately promoting patient optimal health and outcomes by maximizing the tolerance and thus realizing the therapeutic benefits of statins.
The current study aims to confirm the positive effects of dietary nano-Se on nutrients deposition and muscle fibre formation in grass carp fed with high-fat diet (HFD) before overwintering and to reveal its possible molecular mechanism. The lipid deposition, protein synthesis and muscle fibre formation in grass carp fed with regular diet (RD), HFD or HFD supplemented with nano-Se (0·3 or 0·6 mg/kg) for 60 d were tested. Results show that nano-Se significantly reduced lipid content, dripping loss and fibre diameter (P < 0·05), but increased protein content, post-mortem pH24 h and muscle fibre density (P < 0·05) in muscle of grass carp fed with HFD. Notably, dietary nano-Se decreased lipid deposition in the muscle by regulating amp-activated protein kinase activity and increased protein synthesis and fibre formation in muscle by activating target of rapamycin and myogenic determining factors pathways. In summary, dietary nano-Se can regulate the nutrients deposition and muscle fibre formation in grass carp fed with HFD, which exhibit potential benefit for improving flesh quality of grass carp fed with HFD.
We reveal the effects of sweep on the wake dynamics around NACA 0015 wings at high angles of attack using direct numerical simulations and resolvent analysis. The influence of sweep on the wake dynamics is considered for sweep angles from $0^\circ$ to $45^\circ$ and angles of attack from $16^\circ$ to $30^\circ$ for a spanwise periodic wing at a chord-based Reynolds number of $400$ and a Mach number of $0.1$. Wing sweep affects the wake dynamics, especially in terms of stability and spanwise fluctuations with implications on the development of three-dimensional (3-D) wakes. We observe that wing sweep attenuates spanwise fluctuations. Even as the sweep angle influences the wake, force and pressure coefficients can be collapsed for low angles of attack when examined in wall-normal and wingspan-normal independent flow components. Some small deviations at high sweep and incidence angles are attributed to vortical wake structures that impose secondary aerodynamic loads, revealed through the force element analysis. Furthermore, we conduct global resolvent analysis to uncover oblique modes with high disturbance amplification. The resolvent analysis also reveals the presence of wavemakers in the shear-dominated region associated with the emergence of 3-D wakes at high angles of attack. For flows at high sweep angles, the optimal convection speed of the response modes is shown to be faster than the optimal wavemakers speed suggesting a mechanism for the attenuation of perturbations. The present findings serve as a fundamental stepping stone to understanding separated flows at higher Reynolds numbers.
Inkjet printing, originally invented for text and pattern printing, is now central to many industrial applications, such as printed electronics, flexible electronics, 3-D printing of mechanical and even biological devices. However, constrained by the droplets’ ejection mechanism, the accuracy of traditional inkjet printing is limited by the size of its orifice, and it is difficult to achieve a volume of droplets at the femtolitre scale, which hinders its further application in the above fields. To this end, we propose the confined interface vibration inkjet printing (CIVIJP) technique, which is capable of printing patterns in a liquid environment with droplet size much smaller than the orifice from which they are dispensed. Here, further systematic study of the mechanism of printing in a liquid environment was carried out with the assistance of a high-speed imaging technique. It is found for the first time that a single pulse stimulation applied on the piezo-ceramic of the inkjet nozzle can trigger damping oscillations of the oil/water interface confined by the orifice, which can last more than 500 $\mathrm {\mu }$s. By adjusting the intensity of single pulse stimulation, the size and quantity of the dispensed droplets can be controlled in a wide range, which is obviously different from traditional droplet ejection in a gaseous environment. This work reveals the underlying physics between the pulse stimulation and the interface behaviours, as well as the physics between the interface behaviours and the size and number of dispensed droplets, enriching the fundamental theory of the inkjet printing in liquid phase.
Words’ morphemic structure and their orthographic representations vary across languages. How do bilingual experiences with structurally distinct languages influence children's morphological processes for word reading? Focusing on English literacy in monolinguals and bilinguals (N = 350, ages 5–9), we first revealed unique contributions of derivational (friend-li-est) and compound (girl-friend) morphology to early word reading. We then examined mechanisms of bilingual transfer in matched samples of Spanish–English and Chinese–English dual first language learners. Results revealed a principled cross-linguistic interaction between language group (Spanish vs. Chinese bilinguals) and type of morphological awareness. Specifically, bilinguals’ proficiency with the type of morphology that was less characteristic of their home language explained greater variance in their English literacy. These findings showcase the powerful effects of bilingualism on word reading processes in children who have similar reading proficiency but different language experiences, thereby advancing theoretical perspectives on literacy across diverse learners.