We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Demand for building competencies in implementation research (IR) outstrips supply of training programs, calling for a paradigm shift. We used a bootstrap approach to leverage external resources and create IR capacity through a novel 2-day training for faculty scientists across the four Texas Clinical & Translational Science Awards (CTSAs). The Workshop combined internal and external expertise, targeted nationally established IR competencies, incorporated new National Institutes of Health/National Cancer Institute OpenAccess online resources, employed well-known adult education principles, and measured impact. CTSA leader buy-in was reflected in financial support. Evaluation showed increased self-reported IR competency; statewide initiatives expanded. The project demonstrated that, even with limited onsite expertise, it was possible to bootstrap resources and build IR capacity de novo in the CTSA community.
Neuropsychological deficits are present in both major depression and bipolar disorder. So far, however, reports directly comparing these mood disorders with regard to cognitive outcomes have been scant and yielded inconsistent results. This work aims to combine the findings of comparative studies of cognition in major depression and bipolar disorder in order to explore whether these neuropsychiatric conditions present with distinct cognitive features.
Methods
The main online databases were extensively searched to retrieve reports assessing neurocognitive functioning in two groups of mood disorder patients, one with major depressive disorder and another with bipolar disorder, both in the same phase of illness. Between-group effect sizes for cognitive variables were obtained from selected studies and pooled by means of meta-analytic procedures.
Results
During euthymia, a significant overall effect size (Hedges’g = 0.64, P < 0.001) favoring major depressive disorder was found for verbal memory as assessed with list learning tests, whereas no significant between-group differences were found for the remaining variables analyzed. During depressive episodes, similar cognitive outcomes were observed between groups.
Conclusion
At present, it is not possible to postulate specific neuropsychological profiles for major depression and bipolar disorder in light of available evidence. It remains to be ascertained whether the differences found for verbal memory constitute an expression of distinct underlying mechanisms or whether they are best explained by sample characteristics or differential exposure to variables with a negative impact on cognition.
We review some of our recent results about the Radial Acceleration Relation (RAR) and its interpretation as either a fundamental or an emergent law. The former interpretation is in agreement with a class of modified gravity theories that dismiss the need for dark matter in galaxies (MOND in particular). Our most recent analysis, which includes refinements on the priors and the Bayesian test for compatibility between the posteriors, confirms that the hypothesis of a fundamental RAR is rejected at more than 5σ from the very same data that was used to infer the RAR.
The term “subjective response to antipsychotic” (SRA) refers to changes in the subjective state experienced due to antipsychotic (AP) exposition that is independent of the therapeutic or physical side effects of these drugs. This dimension of analysis has been extensively explored in schizophrenic disorders, finding that negative SRA is an early and independent predictor of compliance as well as a successful pathway to construct current theoretical frameworks of these disorders. There is an increasing use of AP in bipolar disorders’ treatment (BD) but no reviews on the topic have been published to date in this population. The aim of this work is to review published data of SRA in BD patients and to discuss their clinical and theoretical implications.
Methods:
An extensive search in online databases was performed. Reports were reviewed and included if they described SRA in BD or included instruments aimed to assess it. Reports of cognitive, sexual, motor autonomic side effects were excluded. Findings were summarized in a narrative fashion.
Results:
Nine reports fulfilled the inclusion criteria and were included in the revision, reporting data from 1282 BD patients. Among these, three were prospective studies and three explored relations between SRA and treatment compliance.
Conclusions:
There is an asymmetry between the increase in the use of antipsychotics in BD and the lack of data regarding the SRA. Phenomenologically, SRA in BD is similar to that found in schizophrenic subjects. Some of these symptoms may be misdiagnosed as depressive symptoms. The existing data show that SRA has a strong correlation with treatment compliance as well as a promising way to develop theoretical paradigms for these disorders.
We analyze the optical properties of Radio-Loud quasars along the Main Sequence (MS) of quasars. A sample of 355 quasars selected on the basis of radio detection was obtained by cross-matching the FIRST survey at 20cm and the SDSS DR12 spectroscopic survey. We consider the nature of powerful emission at the high-Fe ii end of the MS. At variance with the classical radio-loud sources which are located in the Population B domain of the MS optical plane, we found evidence indicating a thermal origin of the radio emission of the highly accreting quasars of Population A.
Bessel-beam launchers are promising and established technologies for focusing applications at microwaves. Their use in time-domain leads to the definition of a new class of devices, namely, the X-wave launchers. In this work, we discuss the focusing features of such devices with a specific interest at millimeter waves. The spatial resolutions of such systems are described under a rigorous mathematical framework to derive novel operating conditions for designing X-wave launchers. These criteria might be particularly appealing for specific millimeter-wave applications. In particular, it is shown that an electrically large aperture is not strictly required, as it seemed from previous works. However, the use of an electrically small aperture would demand a considerably wideband capability. The various discussions presented here provide useful information for the design of X-wave launchers. This aspect is finally shown with reference to the practical design of two different X-wave launchers.
Studies of carrier motion in a variety of nanostructures have indicated that a modified Drude model can be applied, by considering carrier bound motion from backscattering mechanisms and localized oscillator modes. Based on the results of these studies a model of damped harmonic oscillation modes is suggested to evaluate transport parameters in piezotronic devices. Here, the case of a system subject to static and low frequency piezoelectric fields is considered which corresponds to typical working conditions of nanogenerators and, as a working example, the response of ZnO nanowires excited by sound waves is analyzed.
When it comes to advocating animal conservation, it is difficult to be convincing without becoming alarmist. The fact is, time is running out for many of the world's animal species. Habitat loss, introduced species, overexploitation and pollution, all caused by human activities, combine with stochastic factors to place ever-increasing pressure on natural populations (Primack 2002). The estimates of the mid-1990s, predicting that thousands of species and millions of unique populations would go extinct in the following decades (Ehrlich and Wilson 1991; Smith et al. 1993; Lawton and May 1995), remain as relevant as when they were first made, and we are still living in an era of unprecedented biodiversity loss, with current extinction rates 100–1000 times the background rate (Primack 2002) and 5000–25 000 times that recorded in the fossil record (Frankham et al. 2002; but see Mace et al. 1996). Recently, however, there have been some positive signs in the media that biologists’ warnings are being received (e.g. Gianni 2004; Devine et al. 2006; Black 2006; Gabriel 2007; Stern 2007), and a rapid and efficient approach in providing information pertinent to biodiversity preservation could be pivotal in policy decision and in optimizing resource allocation (Naidoo and Ricketts 2006; Marsh et al. 2007). Since the foundation of the field of conservation biology, it has been argued that a synergy between conservation biology and advanced population genetics could provide important information that policy-makers need. As should be obvious by its title, the purpose of this book is an attempt to go some way towards maturing such a synergy; hence, this introduction presents a brief history and the current state of this partnership.
THE EXTINCTION CRISIS
In order to be convinced of the urgency for animal conservation and the information necessary to practise it, an update on the current extinction crisis is pertinent.
We present state of the art fist-principles calculations for the optical spectra and the loss functions of bulk boron nitride in the cubic (c-BN) and in the hexagonal (h-BN) phases. We start from a DFT-LDA density functional Khon-Sham bandstructure to investigate the influence of many-body effects beyond the Random Phase Approximation (RPA) on the optical spectra through the inclusion of self-energy and excitonic effects by a GW calculation and the solution of the Bethe-Salpeter equation. For the loss function we only perform RPA calculations. We show to which extent the description of many-body effects is important for a meaningiful comparison with experiment, and when they can be neglected.
The results of VLBI observations of the quasar 3C 273, obtained during a multi-frequency campaign in late 1992 in the radio, millimeter, and X-ray bands are presented. The aim of the campaign was to test the application of the SSC (Synchrotron Self-Compton) model to 3C 273. Independent estimates are obtained through the assumption of the energy equipartition between particles and magnetic field.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.