We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A process for the synthesis of CdS nanoparticles embedded in hybrid organic/inorganic silica matrices has been developed, based both on colloid and sol-gel chemistry. The large possibilities offered by these techniques allow the study of the influence of various parameters on the luminescence properties of the nanoparticles. Two directions were investigated: first, we characterized the surface of the nanoparticles complexed with an organic thiol using NMR spectroscopy. Then, we synthesized new systems to study the influence of chemical modifications, such as the composition of the aggregates (CdS:Mn), the surface (CdS/ZnS core/shell nanostructures) and the interface between the aggregate and the gel matrix.
Sol-gel matrices doped with lead sulfide nanoparticles showing a structured absorption spectrum were synthesized by using the procedure previously reported for CdS doped matrices. The morphology of the PbS aggregates was investigated by high resolution electron microscopy, and the observations are correlated with the absorption spectra. Finally, preliminary results concerning some linear optical properties of the materials are presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.