We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate random effects of volume (patient days or device days) on healthcare-associated infections (HAIs) and the standardized infection ratio (SIR) used to compare hospitals.
Design:
A longitudinal comparison between publicly reported quarterly data (2014–2020) and volume-based random sampling using 4 HAI types: central-line–associated bloodstream infections, catheter-associated urinary tract infections, Clostridioides difficile infections, methicillin-resistant Staphylococcus aureus infections.
Methods:
Using 4,268 hospitals with reported SIRs, we examined relationships of SIRs to volume and compared distributions of SIRs and numbers of reported HAIs to the outcomes of simulated random sampling. We included random expectations into SIR calculations to produce a standardized infection score (SIS).
Results:
Among hospitals with volumes less than the median, 20%–33% had SIRs of 0, compared to 0.3%–5% for hospitals with volumes higher than the median. Distributions of SIRs were 86%–92% similar to those based on random sampling. Random expectations explained 54%–84% of variation in numbers of HAIs. The use of SIRs led hundreds of hospitals with more infections than either expected at random or predicted by risk-adjusted models to rank better than other hospitals. The SIS mitigated this effect and allowed hospitals of disparate volumes to achieve better scores while decreasing the number of hospitals tied for the best score.
Conclusions:
SIRs and numbers of HAIs are strongly influenced by random effects of volume. Mitigating these effects drastically alters rankings for HAI types and may further alter penalty assignments in programs that aim to reduce HAIs and improve quality of care.
We report the first successful implantation in the United States of a novel mitral valve (MITRIS RESILIA by Edwards Lifesciences) in a patient with history of mitral valve replacement at a young age. This new bioprosthetic valve offers a unique profile and innovative option for mitral valve replacement in patients who are at risk of left ventricular outflow tract obstruction.
To identify characteristics of US health systems and end users that report antimicrobial use and resistance (AUR) data, to determine how NHSN AUR data are used by hospitals and health systems and end users, and to identify barriers to AUR reporting.
Design:
An anonymous survey was sent to Society of Infectious Diseases Pharmacists (SIDP) and Society for Healthcare Epidemiology of America (SHEA) Research Network members.
Methods:
Data were collected via Survey Monkey from January 21 to February 21, 2020. Respondent and hospital data were analyzed using descriptive statistics.
Results:
We received responses from 238 individuals across 43 US states. Respondents were primarily pharmacists (84%), from urban areas, (44%), from nonprofit medical centers (81%), and from hospitals with >250 beds (72%). Also, 62% reported data to the AU module and 19% reported data to the AR module. Use of software for local AU or AR tracking was associated with increased reporting to the AU module (19% vs 64%) and the AR module (2% vs 30%) (P < .001 each). Only 36% of those reporting data to the AU module used NHSN AUR data analysis tools regularly and only 9% reported data to the AR module regularly. Technical challenges and time and/or salary support were the most common barriers to AUR participation cited by all respondents. Among those not reporting AUR data, increased local expectations to report and better software solutions were the most commonly identified solutions to increase AUR reporting.
Conclusions:
Efforts to increase AUR reporting should focus on software solutions and salary support for data-entry activities. Increasing expectations to report may incentivize local resource allocation to improve AUR reporting rates.
Paediatric residents are often taught cardiac anatomy with two-dimensional images of heart specimens, or via imaging such as echocardiography or computed tomography. This study aimed to determine if the use of a structured, interactive, teaching session using heart specimens with CHD would be effective in teaching the concepts of cardiac anatomy.
Methods:
The interest amongst paediatric residents of a cardiac anatomy session using heart specimens was assessed initially by circulating a survey. Next, four major cardiac lesions were identified to be of interest: atrial septal defect, ventricular septal defect, tetralogy of Fallot, and transposition. A list of key structures and anatomic concepts for these lesions was developed, and appropriate specimens demonstrating these features were identified by a cardiac morphologist. A structured, interactive, teaching session was then held with the paediatric residents using the cardiac specimens. The same 10-question assessment was administered at the beginning and end of the session.
Results:
The initial survey demonstrated that all the paediatric residents had an interest in a cardiac anatomy teaching session. A total of 24 participated in the 2-hour session. The median pre-test score was 45%, compared to a median post-test score of 90% (p < 0.01). All paediatric residents who completed a post-session survey indicated that the session was a good use of educational time and contributed to increasing their knowledge base. They expressed great interest in future sessions.
Conclusion:
A 2-hour hands-on cardiac anatomy teaching session using cardiac specimens can successfully highlight key anatomic concepts for paediatric residents.
Using our strict definition of Atomic Scale Analytical Tomography (ASAT), we explore the current landscape of materials characterization tools and discuss how electron microscopy, field ion microscopy, and atom probe tomography are each approaching ASAT. State-of-the-art electron microscopy can achieve sub-angstrom spatial resolution imaging in 2-D and small volumes in 3-D but lacks single-atom chemical sensitivity, especially in 3-D. Field Ion Microscopy can achieve 3-D imaging on small volumes but not for all materials. Atom probe tomography can achieve single-atom elemental quantification in 3-D but lacks the spatial resolution necessary for ASAT. The chapter concludes with a comparison of the different techniques and discusses how different techniques may be complementary.
The historical backdrop for the role of microscopy in the development of human knowledge is reviewed. Atomic-scale investigations are a logical step in a natural progression of increasingly more powerful microscopies. A brief outline of the concept of atomic-scale analytical tomography (ASAT) is given, and its implications for science and technology are anticipated. The intersection of ASAT with advanced computational materials engineering is explored. The chapter concludes with a look toward a future where ASAT will become common.
We discuss how ASAT has the potential to make important advances on critical frontiers in crystallography. These key frontiers include unequivocal quantification of the nearest-neighbour relationships in materials, compositional information, and details of the degree of both short-range order and long-range order. Interfaces represent a particular opportunity. We discuss the present challenges in experimental microscopy-based methods to incorporate both the structural crystallographic information at crystal interfaces with the local chemical compositional information. We anticipate that ASAT will drive forward the field of interface science and interface engineering.
We conclude our contribution with a prospective and optimistic look to the art of what might be possible with the advent of ASAT. We see a convergence between the digital or computational world and the experimental, and envisage ASAT as an enabler for the design and development of new materials. This potential arises because real-world 3D atomic-scale information will bring direct insights into thermodynamic, kinetic, and engineering properties. Moreover, when coupled with machine learning and other computational techniques, it may be envisaged that discovery-based procedures could follow that adjust the observed real-world atomistic configurations toward configurations that exhibit the desired engineering properties. This will fundamentally change the role of microscopy from a tool that provides inference to a materials behaviour to one that provides a quantitative assessment. This opens the pathway to atomic-scale materials informatics.
A complete, albeit brief review of the history of atoms and atomic-scale microscopy is offered. From the concept of the atom developed by Greek philosophers to the ultimate microscopy, the path of development is examined. Atomic-Scale Analytical Tomography (ASAT) is cited as the ultimate microscopy in the sense that the objects, atoms, are the smallest building blocks of nature. The concept of atoms developed as the scientific method grew in application and sophistication beginning in the Middle Ages. The first images of atoms were finally obtained in the mid-twentieth century. Early field ion microscopy evolved eventually into three-dimensional atom probe tomography. The crucial role of the electron microscope in atomic-scale microscopy is examined. Recently, combining atom probe tomography and electron microscopy has emerged as a path toward ASAT. The chapter concludes with the point that ASAT can be expected in the next decade.
Based on the discussion in Chapters 4 and 5, combining information from both electron microscopy, presumably (Scanning) Transmission Electron Microscopy ((S)TEM), and Atom Probe Tomography (APT) is a likely path toward ASAT. Experimentally, concurrent (S)TEM and APT may appear to be a straightforward experiment, but the instrumentation required can be complex and require significant capital investment. In this chapter, we consider what instrumentation is necessary for each technique and what could be done to both simplify and improve the ASAT technique in a combined instrument that solves many of the complexities in experimentation. Experimental conditions such as vacuum pressure, cryogenic temperatures, electron imaging and diffraction, laser wavelength and positioning, and specimen holder designs must all be taken into account.
A burgeoning number of research studies are emerging where scientific questions are being successfully addressed because of the combination of information revealed from atom probe microscopy and density functional theory (DFT). Situations where high-quality experimental data alone would not wholly answer the question at hand and, equally, situations where atomistic simulations would have no obvious starting place were it not for the atom probe. Atomic-scale analytical tomography holds great potential to expand the realm of mediation between experimentation and computer simulation of materials properties. Any model framework is applicable, but we have delved into detail for the case of DFT because it is a self-consistent theory that has arguably the most immediate and exciting intersection with ASAT data.