We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hemorrhage control, triage efficiency, and triage accuracy are essential skills for optimal outcomes in mass casualty incidents. This study evaluated user application of skills through a Virtual Reality (VR) simulation of a subway bombing.
Methods
EMS clinicians and healthcare professionals engaged in a VR simulation of a bomb/blast scenario utilizing VRFirstResponder, a high-fidelity, fully immersive, automated, customizable, and programmable VR simulation platform. Metrics including time to control life-threatening hemorrhage and triage efficacy were analyzed using median and interquartile ranges (IQR).
Results
389 EMS responders engaged in this high-fidelity VR simulation encountering 11 virtual patients with varying injury severity. The median time to triage the scene was 7:38 minutes (SD = 2:27, IQR = 6:13, 8:59). A robust 93% of participants successfully implemented all required hemorrhage control, with a median time of 3:51 minutes for life-threatening hemorrhage control (SD = 1:44, IQR = 2:41, 4:52). Hemorrhage control per patient took a median of 11 seconds (SD = 0:47, IQR = 0:06, 0:20). Participants accurately tagged 73% of patients and 17% effectively utilized the SALT sort commands for optimal patient evaluation.
Conclusion
The VRFirstResponder simulation, currently under validation, aims to enhance realism by incorporating distractors and refining assessment tools.
Large stratovolcanoes in the Cascade Range have high equilibrium-line altitudes that support glaciers whose Holocene and latest Pleistocene advances are amenable to dating. Glacier advances produced datable stratigraphic sequences in lateral moraines, which complement dating of end moraines. New mapping of glacial deposits on Mount Rainier using LIDAR and field observations supports a single latest Pleistocene or early Holocene advance. Rainier R tephra overlies deposits from this advance and could be as old as >11.6 ka; the advance could be of Younger Dryas age. Radiocarbon ages on wood interbedded between tills in the lateral moraines of Nisqually, Carbon, and Emmons glaciers and the South Tahoma glacier forefield suggest glacier advances between 200 and 550 CE, correlative with the First Millennium Advance in western Canada, and during the Little Ice Age (LIA) beginning as early as 1300 CE.
These results resolve previous contradictory interpretations of Mount Rainier's glacial history and indicate that the original proposal of a single pre-Neoglacial cirque advance is correct, in contrast to a later interpretation of two advances of pre- and post-Younger Dryas age, respectively. Meanwhile, the occurrence of the pre-LIA Burroughs Mountain Advance, interpreted in previous work as occurring 3–2.5 ka, is questionable based on inherently ambiguous interpretations of tephra distribution.
Variable harlequin frogs Atelopus varius have declined significantly throughout their range as a result of infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd). The Panama Amphibian Rescue and Conservation Project maintains an ex situ population of this Critically Endangered species. We conducted a release trial with surplus captive-bred A. varius individuals to improve our ability to monitor frog populations post-release, observe dispersal patterns after freeing them into the wild and learn about threats to released frogs, as well as to determine whether natural skin toxin defences of frogs could be restored inside mesocosms in the wild and to compare Bd dynamics in natural amphibian communities at the release site vs a non-release site. The 458 released frogs dispersed rapidly and were difficult to re-encounter unless they carried a radio transmitter. No frog was seen after 36 days following release. Thirty frogs were fitted with radio transmitters and only half were trackable by day 10. Tetrodotoxin was not detected in the skins of the frogs inside mesocosms for up to 79 days. Bd loads in other species present at sites were high prior to release and decreased over time in a pattern probably driven by weather. No differences were observed in Bd prevalence between the release and non-release sites. This trial showed that refinements of our methods and approaches are required to study captive Atelopus frogs released into wild conditions. We recommend continuing release trials of captive-bred frogs with post-release monitoring methods, using an adaptive management framework to advance the field of amphibian reintroduction ecology.