We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Michael Bach, Institute for Research and Development on Inclusion and Society, Ontario and Toronto Metropolitan University,Nicolás Espejo-Yaksic, Exeter College, Oxford, Universiteit Leiden and University College Cork
This chapter reviews the normative framework of legal capacity in China‘s mainland. The primary focus includes China‘s adult guardianship system in the recently adopted Civil Code and the provisions from the first national Mental health Law (MHL) that authorise detention and involuntary treatment. This chapter defines legal capacity, the equal recognition of which is central to the spirit of the United Nations Convention on the Rights of Persons with Disabilities (CRPD or Convention), as boThthe capacity for having rights and the capacity for exercising rights. In China, as elsewhere, legal capacity, particularly the legal capacity of persons with intellectual disabilities and psychosocial disabilities, is denied through provisions for adult guardianship and the application of involuntary admission and treatment under Chinese non-criminal law. Following the adoption of the CRPD, the normative framework governing legal capacity has been subject to law reform, through which the respect for the autonomy of persons concerned has been strengthened. The chapter will outline the key points of this normative framework, with a view to highlighting the changes brought by the law reforms. It will also raise questions about the extent to which these changes have been translated into practice.
Before proceeding to a closer examination of the law regulating the exercise of legal capacity in China's mainland, we outline the approach that gives effect to CRPD Article 12 on legal capacity in this jurisdiction. Sections that follow discuss the law reforms related to the adult guardianship system in the Civil Code and the Mental health Law respectively. We conclude with a discussion on the implementation of such law reforms.
STATUS OF THE CONVENTION AT DOMESTIC LEVEL IN CHINA's MAINLAND
It is difficult to define whether the Chinese legal system, like most domestic legal systems, follows the theory of monism or dualism; therefore, the status of international treaties in the Chinese legal system is a very complex issue. There is not an explicit rule that prescribes the status, hierarchy, or effect of Article 12 in Chinese law. Before the ratification of the CRPD, China has been a party to all the core human rights conventions except for the International Covenant on Civil and Political Rights, which has not been ratified.
At present, the study on autonomous unmanned ground vehicle navigation in an unstructured environment is still facing great challenges and is of great significance in scenarios where search and rescue robots, planetary exploration robots, and agricultural robots are needed. In this paper, we proposed an autonomous navigation method for unstructured environments based on terrain constraints. Efficient path search and trajectory optimization on octree map are proposed to generate trajectories, which can effectively avoid various obstacles in off-road environments, such as dynamic obstacles and negative obstacles, to reach the specified destination. We have conducted empirical experiments in both simulated and real environments, and the results show that our approach achieved superior performance in dynamic obstacle avoidance tasks and mapless navigation tasks compared to the traditional 2-dimensional or 2.5-dimensional navigation methods.
Spatial profiles of impurity emission measurements in the extreme ultraviolet (EUV) spectroscopic range in radiofrequency (RF)-heated discharges are combined with one-dimensional and three-dimensional transport simulations to study the effects of resonant magnetic perturbations (RMPs) on core impurity accumulation at EAST. The amount of impurity line emission mitigation by RMPs appears to be correlated with the ion Z for lithium, carbon, iron and tungsten monitored, i.e. stronger suppression of accumulation for heavier ions. The targeted effect on the most detrimental high-Z impurities suggests a possible advantage using RMPs for impurity control. Profiles of transport coefficients are calculated with the STRAHL one-dimensional impurity transport code, keeping $\nu /D$ fixed and using the measured spatial profiles of $\textrm{F}{\textrm{e}^{20 + }}$, $\textrm{F}{\textrm{e}^{21 + }}$ and $\textrm{F}{\textrm{e}^{22 + }}$ to disentangle the transport coefficients. The iron diffusion coefficient ${D_{\textrm{Fe}}}$ increases from $1.0- 2.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ to $1.5- 3.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ from the core region to the edge region $(\rho \gt 0.5)$ after the onset of RMPs. Meanwhile, an inward pinch of iron convective velocity ${\nu _{\textrm{Fe}}}$ decreases in magnitude in the inner core region and increases significantly in the outer confined region, simultaneously contributing to preserving centrally peaked $\textrm{Fe}$ profiles and exhausting the impurities. The ${D_{\textrm{Fe}}}$ and ${\nu _{\textrm{Fe}}}$ variations lead to reduced impurity contents in the plasma. The three-dimensional edge impurity transport code EMC3-EIRENE was also applied for a case of RMP-mitigated high-Z accumulation at EAST and compared to that of low-Z carbon. The exhaust of ${\textrm{C}^{6 + }}$ toward the scrape-off layer accompanying an overall suppression of heavier ${\textrm{W}^{30 + }}$ is observed when using RMPs.
In present study, we explored the effects and the underlying mechanisms of phospholipase C (PLC) mediating glucose-induced changes in intestinal glucose transport and lipid metabolism by using U-73122 (a PLC inhibitor). We found that glucose incubation activated the PLC signal and U-73122 pre-incubation alleviated the glucose-induced increase in plcb2, plce1 and plcg1 mRNA expression. Meanwhile, U-73122 pre-treatment blunted the glucose-induced increase in sodium/glucose co-transporters 1/2 mRNA and protein expressions. U-73122 pre-treatment alleviated the glucose-induced increase in TAG content, BODIPY 493/503 fluorescence intensity, lipogenic enzymes (glucose 6-phospate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), malic enzyme and fatty acid synthase (FAS)) activity and the mRNA expressions of lipogenic genes and related transcription factors (6pgd, g6pd, fas, acca, srebp1 and carbohydrate response element-binding protein (chrebp)) in intestinal epithelial cells of yellow catfish. Further research found that U-73122 pre-incubation mitigated the glucose-induced increase in the ChREBP protein expression and the acetylation level of ChREBP in HEK293T cells. Taken together, these data demonstrated that the PLC played a major role in the glucose-induced changes of glucose transport and lipid metabolism and provide a new perspective for revealing the molecular mechanism of glucose-induced changes of intestinal glucose absorption, lipid deposition and metabolism.
In this article, we discuss the backgrounds and technical details about several smart manufacturing projects in a tier-one electronics manufacturing facility. We devise a process to manage logistic forecast and inventory preparation for electronic parts using historical data and a recurrent neural network to achieve significant improvement over current methods. We present a system for automatically qualifying laptop software for mass production through computer vision and automation technology. The result is a reliable system that can save hundreds of man-years in the qualification process. Finally, we create a deep learning-based algorithm for visual inspection of product appearances, which requires significantly less defect training data compared to traditional approaches. For production needs, we design an automatic optical inspection machine suitable for our algorithm and process. We also discuss the issues for data collection and enabling smart manufacturing projects in a factory setting, where the projects operate on a delicate balance between process innovations and cost-saving measures.
A one-dimensional steady-state model for stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) processes in laser-irradiated plasmas is presented. Based on a novel “predictor-corrector” method, the model is capable to deal with broadband scattered light and inhomogeneous plasmas, exhibiting robustness and high efficiency. Influences of the electron density and temperature on the linear gains of both SRS and SBS are investigated, which indicates that the SRS gain is more sensitive to the electron density and temperature than that of the SBS. For the low-density case, the SBS dominates the scattering process, while the SRS exhibits much higher reflectivity in the high-density case. The nonlinear saturation mechanisms and competition between SRS and SBS are included in our model by a phenomenological method. The typical anti-correlation between SRS and SBS versus electron density is reproduced in the model. Calculations of the reflectivities are qualitatively in agreement with the typical results of experiments and simulations.
The novel coronavirus disease 2019 (COVID-19) pandemic has spread to over 213 countries and territories. We sought to describe the clinical features of fatalities in patients with severe COVID-19.
Methods:
We conducted an Internet-based retrospective cohort study through retrieving the clinical information of 100 COVID-19 deaths from nonduplicating incidental reports in Chinese provincial and other governmental websites between January 23 and March 10, 2020.
Results:
Approximately 6 of 10 COVID-19 deaths were males (64.0%). The average age was 70.7 ± 13.5 y, and 84% of patients were elderly (over age 60 y). The mean duration from admission to diagnosis was 2.2 ± 3.8 d (median: 1 d). The mean duration from diagnosis to death was 9.9 ± 7.0 d (median: 9 d). Approximately 3 of 4 cases (76.0%) were complicated by 1 or more chronic diseases, including hypertension (41.0%), diabetes (29.0%) and coronary heart disease (27.0%), respiratory disorders (23.0%), and cerebrovascular disease (12.0%). Fever (46.0%), cough (33.0%), and shortness of breath (9.0%) were the most common first symptoms. Multiple organ failure (67.9%), circulatory failure (20.2%), and respiratory failure (11.9%) are the top 3 direct causes of death.
Conclusions:
COVID-19 deaths are mainly elderly and patients with chronic diseases especially cardiovascular disorders and diabetes. Multiple organ failure is the most common direct cause of death.
The sediments in Lake Huguang Maar in coastal South China were previously thought to originate mainly from wind-blown dust transported from North China, such that the lake sediments recorded the varying strength of the Asian winter monsoon. An alternative explanation was that the local pyroclastic rocks supplied the lake sediments, but the actual contributions from the different sources remained unclear. Geochemical analyses including 87Sr/86Sr and 143Nd/144Nd and trace elements support the local pyroclastic rock as the dominant source: <22% of the total Sr in the lake sediments and ∼ 17% of the Nd arises from the distant source. Nb/Ta and Zr/Hf for the lake sediments are identical to those for the local rock but differ from the ratios for the wind-blown dust, and chondrite-normalized rare earth element patterns for the lake sediments are similar to those for the local rock and soil, but differ from those for the distant source. The sediments in Lake Huguang Maar are probably input into the lake through runoff and thus controlled by the hydrology of the lake. Wind-blown dust transported by the Asian winter monsoon from arid North China is only a minor contribution to the sediments.
The aim of this study was to evaluate the therapeutic effects of osteopontin neutralization treatment on schistosome-induced liver injury in BALB/C mice. We randomly divided 100 BALB/C mice into groups A, B, C, D and group E. Mice in all groups except group A were abdominally infected with schistosomal cercariae to induce a schistosomal hepatopathological model. Mice in group C, D and group E were respectively administered with praziquantel, praziquantel plus colchicine and praziquantel plus neutralizing osteopontin antibody. We extracted mouse liver tissues at 3 and 9 weeks after the ‘stool-eggs-positive’ day, observed liver histopathological changes by haematoxylin-eosin and Masson trichrome staining and detected the expression of osteopontin, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β1) by immunohistochemistry, RT-PCR and Western blot. We found that praziquantel plus neutralizing osteopontin antibody treatment significantly decreased the granuloma dimension, the percentage of collagen and the expression of osteopontin, α-SMA and TGF-β1 compared to praziquantel plus colchicine treatment in both the acute and chronic stage of schistosomal liver damage (P<0·05). So we believe that the combined regimen of osteopontin immunoneutralization and anti-helminthic treatment can reduce the granulomatous response and liver fibrosis during the schistosomal hepatopathologic course.
The estimation of dietary intake in population-based studies is often assessed by the FFQ. The objective of our study is to evaluate the validity of an FFQ used to assess dietary fatty acid intake among middle-aged Chinese adults in Southern China.
Design
The method of triads was applied to obtain the validity coefficients (VC) of the FFQ for specific fatty acids. A subsample was randomly selected from an earlier cross-sectional study. The FFQ and 3d dietary records were used for dietary assessment, and the fatty acid composition of erythrocyte membranes was determined as the biomarker.
Results
The Spearman correlation coefficients between the FFQ and 3d dietary records were moderate to good (r = 0·28–0·66). The VC of the FFQ estimated by the method of triads were 0·72, 0·61, 0·65, 0·75 and 0·67 for MUFA, total n-6 fatty acids, α-linolenic acid, EPA and DHA, respectively. The VC could not be calculated for SFA, PUFA and total n-3 fatty acids because of negative correlations among the three measurements. But, the correlations between the FFQ and the dietary records were moderate for these fatty acids.
Conclusions
Our FFQ applied in Southern Chinese adults was valid to estimate their dietary fatty acid intake and was thus suitable for use in a large cohort study.
The dimensionless thermoelectric figure-of-merit (ZT) in bulk materials has remained about 1 for many years. Here we show that a significant ZT improvement can be achieved in nanocrystalline bulk materials. These nanocrystalline bulk materials were made by hot-pressing nanopowders that are ball-milled from either crystalline ingots or elements. Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects. More importantly, the nanostructure approach has been demonstrated in a few thermoelectric material systems, proving its generosity. The approach can be easily scaled up to multiple tons. Thermal stability studies have shown that the nanostructures are stable at the application temperature for an extended period of time. It is expected that such enhanced materials will make the existing cooling and power generation systems more efficient.
Spindle movement, including spindle migration during first meiosis and spindle rotation during second meiosis, is essential for asymmetric divisions in mouse oocytes. Previous studies by others and us have shown that microfilaments are required for both spindle migration and rotation. In the present study, we aimed to further investigate the mechanism controlling spindle movement during mouse oocyte meiosis. By employing drug treatment and immunofluorescence microscopy, we showed that dynamic microtubule assembly was involved in both spindle migration and rotation. Furthermore, we found that the calcium/CaM/CaMKII pathway was important for regulating spindle rotation.
Transmission electron microscopy (TEM), x-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were applied to study the correlation between the microstructure and physical properties of the GaN films grown by light radiation heating metalorganic chemical vapor deposition (LRH-MOCVD), using GaN buffer layer on sapphire substrates. When the density of the threading dislocation (TD) increases about one order of magnitude, the yellow luminescence (YL) intensity is strengthened from negligible to two orders of magnitude higher than the band edge emission intensity. The full width of half maximum (FWHM) of the GaN (0002) peak of the XRD rocking curve was widened from 11 min to 15 min, and in Raman spectra, the width of E2 mode is broadened from 5 cm−1 to 7 cm−1. A “zippers” structure at the interface of GaN/sapphire was observed by high-resolution electron microscope (HREM). Furthermore the origins of TD and relationship between physical properties and microstructures combining the growth conditions are discussed.
Transmission electron microscopy (TEM), x-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were applied to study the correlation between the microstructure and physical properties of the GaN films grown by light radiation heating metalorganic chemical vapor deposition (LRH-MOCVD), using GaN buffer layer on sapphire substrates. When the density of the threading dislocation (TD) increases about one order of magnitude, the yellow luminescence (YL) intensity is strengthened from negligible to two orders of magnitude higher than the band edge emission intensity. The full width of half maximum (FWHM) of the GaN (0002) peak of the XRD rocking curve was widened from 11 min to 15 min, and in Raman spectra, the width of E2 mode is broadened from 5 cm-1 to 7 cm-1. A “zippers” structure at the interface of GaN/sapphire was observed by high-resolution electron microscope (HREM). Furthermore the origins of TD and relationship between physical properties and microstructures combining the growth conditions are discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.