We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Based on the measurements conducted over the landfast sea ice in Prydz Bay, East Antarctica during the sea-ice growth season in 2016, various parameterization schemes in the high-resolution thermodynamic snow/ice model HIGHTSI are evaluated. The parameterization scheme of turbulent fluxes produces the largest errors compared with the parameterization schemes for other surface heat fluxes. However, the sea-ice thickness simulation is most sensitive to the differences in upward longwave radiation at the surface. In addition, the sea-ice thickness simulation during the growth season is highly sensitive to the oceanic heat flux, and a new oceanic heat flux parameterization scheme based on the bulk method is proposed. The new parameterization scheme is tested in a second year, and it significantly improves the model performance relative to the standard configuration when compared against observations. Finally, the seasonal variation in the heat budget and its influence on the sea-ice thickness variation are analyzed. The net shortwave radiation, sensible heat flux and conductive heat flux (the net longwave radiation and latent heat flux) are found to be the surface heat sources (heat sinks) during the growth season. The larger conductive heat flux and the smaller oceanic heat flux can intensify the growth of sea ice.
As the corona virus disease 2019 (COVID-19) pandemic continues around the world, understanding the transmission characteristics of COVID-19 is vital for prevention and control. We conducted the first study aiming to estimate and compare the relative risk of secondary attack rates (SARs) of COVID-19 in different contact environments. Until 26 July 2021, epidemiological studies and cluster epidemic reports of COVID-19 were retrieved from SCI, Embase, PubMed, CNKI, Wanfang and CBM in English and Chinese, respectively. Relative risks (RRs) were estimated in pairwise comparisons of SARs between different contact environments using the frequentist NMA framework, and the ranking of risks in these environments was calculated using the surface under the cumulative ranking curve (SUCRA). Subgroup analysis was performed by regions. Thirty-two studies with 68 260 participants were identified. Compared with meal or gathering, transportation (RR 10.55, 95% confidence interval (CI) 1.43–77.85), medical care (RR 11.68, 95% CI 1.58–86.61) and work or study places (RR 10.15, 95% CI 1.40–73.38) had lower risk ratios for SARs. Overall, the SUCRA rankings from the highest to the lowest were household (95.3%), meal or gathering (81.4%), public places (58.9%), daily conversation (50.1%), transportation (30.8%), medical care (18.2%) and work or study places (15.3%). Household SARs were significantly higher than other environments in the subgroup of mainland China and sensitive analysis without small sample studies (<100). In light of the risks, stratified personal protection and public health measures need to be in place accordingly, so as close contacts categorising and management.
Arctic landfast sea ice (LFSI) represents an important quasi-stationary coastal zone. Its evolution is determined by the regional climate and bathymetry. This study investigated the seasonal cycle and interannual variations of LFSI along the northwest coast of Kotelny Island. Initial freezing, rapid ice formation, stable and decay stages were identified in the seasonal cycle based on application of the visual inspection approach (VIA) to MODIS/Envisat imagery and results from a thermodynamic snow/ice model. The modeled annual maximum ice thickness in 1995–2014 was 2.02 ± 0.12 m showing a trend of −0.13 m decade−1. Shortened ice season length (−22 d decade−1) from model results associated with substantial spring (2.3°C decade−1) and fall (1.9°C decade−1) warming. LFSI break-up resulted from combined fracturing and melting, and the local spatiotemporal patterns of break-up were associated with the irregular bathymetry. Melting dominated the LFSI break-up in the nearshore sheltered area, and the ice thickness decreased to an average of 0.50 m before the LFSI disappeared. For the LFSI adjacent to drift ice, fracturing was the dominant process and the average ice thickness was 1.56 m at the occurrence of the fracturing. The LFSI stages detected by VIA were supported by the model results.
A fever clinic within a hospital plays a vital role in pandemic control because it serves as an outpost for pandemic discovery, monitoring and handling. As the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan was gradually brought under control, the fever clinic in the West Campus of Wuhan Union Hospital introduced a new model for construction and management of temporary mobile isolation wards. A traditional battlefield hospital model was combined with pandemic control regulations, to build a complex of mobile isolation wards that used adaptive design and construction for medical operational, medical waste management and water drainage systems. The mobile isolation wards allowed for the sharing of medical resources with the fever clinic. This increased the capacity and efficiency of receiving, screening, triaging and isolation and observation of patients with fever. The innovative mobile isolation wards also controlled new sudden outbreaks of COVID-19. We document the adaptive design and construction model of the novel complex of mobile isolation wards and explain its characteristics, functions and use.
In this paper, we propose and study an almost periodic reaction–diffusion epidemic model in which disease latency, spatial heterogeneity and general seasonal fluctuations are incorporated. The model is given by a spatially nonlocal reaction–diffusion system with a fixed time delay. We first characterise the upper Lyapunov exponent λ* for a class of almost periodic reaction–diffusion equations with a fixed time delay and provide a numerical method to compute it. On this basis, the global threshold dynamics of this model is established in terms of λ* It is shown that the disease-free almost periodic solution is globally attractive if λ* < 0, while the disease is persistent if λ* > 0. By virtue of numerical simulations, we investigate the effects of diffusion rate, incubation period and spatial heterogeneity on disease transmission.
We aimed to describe the clinical features in coronavirus disease 2019 (COVID-19) cases. We studied 134 critically ill COVID-19 cases from 30 December 2019 to 20 February 2020 in an intensive care unit (ICU) at Wuhan Jinyintan Hospital. Demographics, underlying diseases, therapy strategies and test results were collected and analysed from patients on admission, admission to the ICU and 48 h before death. The non-survivors were older (65.46 (s.d. 9.74) vs. 46.45 (s.d. 11.09)) and were more likely to have underlying diseases. The blood group distribution of the COVID-19 cases differed from that of the Han population in Wuhan, with type A being 43.85%; type B, 26.92%; type AB, 10% and type O, 19.23%. Non-survivors tend to develop more severe lymphopaenia, with higher C-reactive protein, interleukin-6, procalcitonin, D-dimer levels and gradually increased with time. The clinical manifestations were non-specific. Compared with survivors, non-survivors more likely to have organ function injury, and to receive mechanical ventilation, either invasively or noninvasively. Multiple organ failure and secondary bacterial infection in the later period is worthy of attention.
A novel ionic liquid/α-ZrP (C16MIM/α-ZrP) lamellar nanocomposite was fabricated via the electrostatic self-assembly deposition technique by using exfoliated α-ZrP nanosheets and guest molecules (1-hexadecyl-3-methylimidazolium bromide) as building blocks under mild conditions. C16MIM/α-ZrP nanocomposite was characterized by various analytical techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy, and synchronous thermal analyzer. The net interlayer spacing of α-ZrP determined by XRD confirmed that the C16MIM cations formed a monolayer arrangement between the α-ZrP nanosheets. The morphology and microstructure of C16MIM/α-ZrP composite were observed using SEM and TEM. The C16MIM/α-ZrP modified glass carbon electrode exhibited excellent electrocatalytic activity toward the oxidation of nitrite in weak base media. The results obtained with differential pulse voltammetry demonstrated that the C16MIM/α-ZrP hybrid detected nitrite linearly in the concentration range from 7.3 μM to 1.25 mM with the detection limit of 1.26 μM (S/N = 3). Additionally, the prepared sensor showed outstanding reproducibility, high stability, and anti-interference capability.
Snow and ice were monitored by thermistor-string-based Snow and Ice Mass Balance Array (SIMBA) in Lake Orajärvi in northern Finland. An existing automatic SIMBA-algorithm was further developed to derive air/snow, snow/ice and ice/water interfaces based on the SIMBA environment temperature (ET) profiles. The identified interfaces agreed with in situ observations made in 2011/12 winter season. The method was capable to identify upward-moving snow/ice interface that was also visible from SIMBA heating temperature (HT) profiles, which responds to differences in the thermal diffusivities of air, snow, ice and water. The SIMBA data obtained in winters 2017/18 and 2018/19 were used to investigate snow and ice mass balance. An upward-moving snow/ice interface was detected as a result of meteoric ice (snow ice and superimposed ice) formation. Snow contributed to granular lake ice formation up to 40–55% of the total ice thickness on the seasonal mean. Heavy snowfalls and low air temperature in early winter are favourable for granular ice formation. The seasonal mean snow depth on nearby land was 2.7–2.9 times of that on the lake. The estimation of freeboard from snow and ice mass-balance measurement is sensitive to the snow density. Accurate ice freeboard calculation is still a challenge.
A Fast Ice Prediction System (FIPS) was constructed and is the first regional land-fast sea-ice forecasting system for the Antarctic. FIPS had two components: (1) near-real-time information on the ice-covered area from MODIS and SAR imagery that revealed, tidal cracks, ridged and rafted ice regions; (2) a high-resolution 1-D thermodynamic snow and ice model (HIGHTSI) that was extended to perform a 2-D simulation on snow and ice evolution using atmospheric forcing from ECMWF: either using ERA-Interim reanalysis (in hindcast mode) or HERS operational 10-day predictions (in forecast mode). A hindcast experiment for the 2015 season was in good agreement with field observations, with a mean bias of 0.14 ± 0.07 m and a correlation coefficient of 0.98 for modeled ice thickness. The errors are largely caused by a cold bias in the atmospheric forcing. The thick snow cover during the 2015 season led to modeled formation of extensive snow ice and superimposed ice. The first FIPS operational service was performed during the 2017/18 season. The system predicted a realistic ice thickness and onset of snow surface melt as well as the area of internal ice melt. The model results on the snow and ice properties were considered by the captain of R/V Xuelong when optimizing a low-risk route for on-ice transportation through fast ice to the coastal Zhongshan Station.
We examine the relative effect of warming events (storms) and snow cover on thermodynamic growth of Arctic sea ice in winter. We use a 1-D snow and ice thermodynamic model to perform sensitivity experiments. Observations from the winter period of the Norwegian young sea ICE (N-ICE2015) campaign north of Svalbard are used to initiate and force the model. The N-ICE2015 winter was characterized by frequent storm events that brought pulses of heat and moisture, and a thick snow cover atop the sea ice (0.3–0.5 m). By the end of the winter, sea-ice bottom growth was negligible. We show that the thermodynamic effect of storms to the winter sea-ice growth is controlled by the amount of snow on sea ice. For 1.3 m initial ice thickness, the decrease in ice growth caused by the warming events ranged from −1.4% (for 0.5 m of snow) to −7.5% (for snow-free conditions). The decrease in sea-ice growth caused by the thick snow (0.5 m) was more important, ranging from −17% (with storms) to −23% (without storms). The results showcase the critical role of snow on winter Arctic sea-ice growth.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (
${\sim}60\%$
), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
We report on the generation of a mid-infrared (mid-IR) frequency comb with a maximum average output power of 250 mW and tunability in the 2.7–4.0 μm region. The approach is based on a single-stage difference frequency generation (DFG) starting from a compact Yb-doped fiber laser system. The repetition rate of the near-infrared (NIR) comb is locked at 75 MHz. The phase noise of the repetition rate in the offset-free mid-IR comb system is measured and analyzed. Except for the intrinsic of NIR comb, environmental noise at low frequency and quantum noise at high frequency from the amplifier chain and nonlinear spectral broadening are the main noise sources of broadening the linewidth of comb teeth, which limits the precision of mid-IR dual-comb spectroscopy.
Research on graph representation learning has received great attention in recent years since most data in real-world applications come in the form of graphs. High-dimensional graph data are often in irregular forms. They are more difficult to analyze than image/video/audio data defined on regular lattices. Various graph embedding techniques have been developed to convert the raw graph data into a low-dimensional vector representation while preserving the intrinsic graph properties. In this review, we first explain the graph embedding task and its challenges. Next, we review a wide range of graph embedding techniques with insights. Then, we evaluate several stat-of-the-art methods against small and large data sets and compare their performance. Finally, potential applications and future directions are presented.
Intrinsic size effects in nanoglass plasticity have been connected to the structural length scales imposed by the interfacial network, and control over this behavior is critical to designing amorphous alloys with improved mechanical response. In this paper, atomistic simulations are employed to probe strain delocalization in nanoglasses with explicit correlation to the interfacial characteristics and length scales of the amorphous grain structure. We show that strength is independent of grain size under certain conditions, but scales with the excess free volume and degree of short-range ordering in the interfaces. Structural homogenization upon annealing of the nanoglasses increases their strength toward the value of the bulk metallic glass; however, continued partitioning of strain to the interfacial regions inhibits the formation of a primary shear band. Intrinsic size effects in nanoglass plasticity thus originate from biased plastic strain accumulation within the interfacial regions, which will ultimately govern strain delocalization and homogenous flow in nanoglasses.
Several studies have suggested that higher carotenoid levels may be beneficial for atherosclerosis patients, but few studies have examined this relationship in the Chinese population. This cross-sectional study examined the association between the levels of carotenoids in diet and serum and carotid intima–media thickness (IMT) in Chinese adults aged 50–75 years in Guangzhou, China. Dietary intake was assessed using a FFQ. HPLC was used to assay the serum concentrations of α-carotene, β-carotene, lutein+zeaxanthin, β-cryptoxanthin and lycopene. The IMT at the common carotid artery (CCA) and bifurcation of the carotid artery was measured by B-mode ultrasound. A total of 3707 and 2947 participants were included in the analyses of dietary and serum carotenoids. After adjustment for demographic, socio-economic and lifestyle factors, all the serum carotenoids levels except lycopene were found to be inversely associated with the IMT at the CCA and bifurcation (Ptrend<0·001 to 0·013) in both men and women. The absolute mean differences in the IMT between the subjects in the extreme quartiles of serum carotenoid levels were 0·034 mm (α-carotene), 0·037 mm (β-carotene), 0·032 mm (lutein+zeaxanthin), 0·030 mm (β-cryptoxanthin), 0·015 mm (lycopene) and 0·035 mm (total carotenoids) at the CCA; the corresponding values were 0·025, 0·053 0·043, 0·050, 0·011 and 0·042 mm at the bifurcation. The favourable associations were also observed between dietary carotenoids (except lycopene) and the CCA IMT. In conclusion, elevated carotenoid levels in diet and serum are associated with lower carotid IMT values (particular at the CCA) in Chinese adults.
A coaxial-output rolled strip pulse-forming line (RSPFL) with a dry structure is researched for the purpose of miniaturization and all-solid state of pulse-forming lines (PFL). The coaxial-output RSPFL consists of a coaxial-output electrode (COE) and a rolled strip line (RSL). The COE is characterized by quasi-coaxial structure, making the output pulse propagate along the axial direction with a small output inductance. The RSL is rolled on the COE, whose transmission characteristics are analyzed theoretically. It shows that the RSL can be regarded as a planar strip line when the rolling radius of the strip line is larger than 60 times of the thickness of the insulation dielectric layer of RSL. CST modeling was carried out to simulate the discharging characteristic of the coaxial-output RSPFL. It shows that the coaxial-output RSPFL can deliver a discharging pulse with a rise time <6 ns when the impedance of the RSL matches that of the COE, which confirms the theoretical analysis. A prototype of the coaxial-output RSPFL was developed. A 49-kV discharging pulse on a matched load was achieved when it was charged to 100 kV. The discharging waveform has a pulse width of 32 ns, with a rise time of 6 ns, which is consistent with the simulation waveform. An energy-storage density of 1.9 J/L was realized in the coaxial-output RSPFL. By the method of multi-stage connection in series, a much higher output voltage is convenient to be obtained.
This study aimed to investigate the effects of dietary live yeast (LY) supplementation on growth, intestinal permeability and immunological parameters of piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). Piglets weaned at 21 d were allocated into three treatments with six pens and six piglets per pen, receiving the control diet (CON), diets supplemented with antibiotics plus zinc oxide (ANT–ZnO) and LY (Saccharomyces cerevisiae strain CNCM I-4407), respectively, for a period of 2 weeks. On day 8, thirty-six piglets were selected as control without ETEC (CON), CON–ETEC, ANT–ZnO–ETEC and LY–ETEC groups challenged with ETEC until day 10 for sample collections. Piglets fed ANT–ZnO diet had the highest average daily gain and average daily feed intake (P<0·05) during the 1st week, but ADG of piglets fed the ANT–ZnO diet was similar as piglets fed LY diet during the second week. Piglets with LY–ETEC or ANT–ZnO–ETEC had markedly lower diarrhoea score (P<0·05) than piglets with CON–ETEC during the 24 h after ETEC challenge. Relative to piglets with CON, the counts of E. coli, urinary ratio of lactulose to mannitol, plasma IL-6 concentration, mRNA abundances of innate immunity-related genes in ileum and mesenteric lymph node tissues were increased (P<0·05), whereas the villous height of jejunum and relative protein expression of ileum claudin-1 were decreased (P<0·05) in piglets with CON–ETEC; however, these parameters did not markedly change in piglets with LY–ETEC or ANT–ZnO–ETEC. In summary, dietary LY supplementation could alleviate the severity of diarrhoea in piglets with ETEC, which may be associated with the improved permeability, innate immunity and bacterial profile.