We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Motivated by contradicting or insufficient information regarding the large-scale flow dynamics around surface-mounted finite-height square prisms of small aspect ratio, the present study investigates the dominant vortex shedding and low-frequency dynamics around a surface-mounted cube. These flow modes were obtained from the spectral proper orthogonal decomposition of large-eddy simulation results, at a Reynolds number of $\textit {Re}=1\times 10^4$ and two different types of boundary layer: a thin and laminar boundary layer with thickness $\delta /D=0.2$ and a thick and turbulent boundary layer with $\delta /D=0.8$. The main antisymmetric mode pair revealed a new flow pattern with the alternate shedding of streamwise flow structures, indicating a transition from the half-loops of taller prisms to only streamwise strands (i.e. no vertical core) for smaller aspect ratio. The formation process of the streamwise structures is due to a reorientation of the vorticity of the arch vortex in the streamwise direction characteristic of the shed structures. The low-frequency drift mode affected the length of the recirculation region, the strength of vortex shedding, and the near-wall flow field and pressure distribution on the cube's faces, leading to low-frequency variations in the fluctuating drag and normal force coefficients. These large-scale flow dynamics were similar for both boundary layers, but minor differences were identified, related mostly to the occurrence of flow attachment and the formation of a headband vortex for the thicker boundary layer.
Cyclospora cayetanensis is a coccidian parasite associated with diarrheal illness. In the USA, foodborne outbreaks of cyclosporiasis have been documented almost every year since the mid-1990s. The typical approach used to identify this parasite in human stools is an examination of acid-fast-stained smears under bright-field microscopy. UV fluorescence microscopy of wet mounts is more sensitive and specific than acid-fast staining but requires a fluorescence microscope with a special filter not commonly available in diagnostic laboratories. In this study, we evaluated a new DNA extraction method based on the Universal Nucleic Acid Extraction (UNEX) buffer and compared the performances of four published real-time polymerase chain reaction (PCR) assays for the specific detection of C. cayetanensis in stool. The UNEX-based method had an improved capability to recover DNA from oocysts compared with the FastDNA stool extraction method. The best-performing real-time PCR assay was a C. cayetanensis-specific TaqMan PCR that targets the 18S ribosomal RNA gene. This new testing algorithm should be useful for detection of C. cayetanensis in human stool samples.
Email your librarian or administrator to recommend adding this to your organisation's collection.