We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the Pilot Survey Phase 2 data release for the Wide-field ASKAP L-band Legacy All-sky Blind surveY (WALLABY), carried-out using the Australian SKA Pathfinder (ASKAP). We present 1760 H i detections (with a default spatial resolution of 30′′) from three pilot fields including the NGC 5044 and NGC 4808 groups as well as the Vela field, covering a total of $\sim 180$ deg$^2$ of the sky and spanning a redshift up to $z \simeq 0.09$. This release also includes kinematic models for over 126 spatially resolved galaxies. The observed median rms noise in the image cubes is 1.7 mJy per 30′′ beam and 18.5 kHz channel. This corresponds to a 5$\sigma$ H i column density sensitivity of $\sim 9.1\times10^{19}(1 + z)^4$ cm$^{-2}$ per 30′′ beam and $\sim 20$ km s$^{-1}$ channel and a 5$\sigma$ H i mass sensitivity of $\sim 5.5\times10^8 (D/100$ Mpc)$^{2}$ M$_{\odot}$ for point sources. Furthermore, we also present for the first time 12′′ high-resolution images (“cut-outs”) and catalogues for a sub-sample of 80 sources from the Pilot Survey Phase 2 fields. While we are able to recover sources with lower signal-to-noise ratio compared to sources in the Public Data Release 1, we do note that some data quality issues still persist, notably, flux discrepancies that are linked to the impact of side lobes associated with the dirty beams due to inadequate deconvolution. However, in spite of these limitations, the WALLABY Pilot Survey Phase 2 has already produced roughly a third of the number of HIPASS sources, making this the largest spatially resolved H i sample from a single survey to date.
Identification of sugarcane hybrids is difficult when selections are based solely on morphological traits. Our objective was to combine morphological traits and molecular marker analysis to select F1 hybrids from two separate crosses between Djatiroto, a clone of Saccharum spontaneum, and elite sugarcane clones, LCP 85-384 (Cross 97-3144) and CP 62-258 (Cross 97-3146). The maternal inflorescences of Djatiroto were emasculated by submersion in a circulating 45°C hot-water tank for 10 min to minimize self-fertilization. Cross 97-3144 produced 4.7 g of seeds with 338 viable seeds per gram and Cross 97-3146 produced 2.4 g of seeds with 166 viable seeds per gram. After greenhouse germination, 96 progeny from each cross were evaluated in a field plot. Evaluations were conducted on the ratoon crops for stalk diameter (mm), juice Brix (percentage soluble solids), and a randomly amplified polymorphic DNA (RAPD) marker OPA-11-366 that was reproducibly amplified through PCR from the elite clones, but not the maternal S. spontaneum clone. Fifty progeny (52.1%) from Cross 97-3144 and 36 progeny (37.5%) from Cross 97-3146 inherited the RAPD marker. Five putative F1 progeny were selected from each cross, namely US 99-43, US 99-44, US 99-45, US 99-46 and US 99-47 from Cross 97-3144, and US 99-48, US 99-49, US 99-50, US 99-51 and US 99-52 from Cross 97-3146, based on their relatively larger stalk diameter, higher Brix and inheritance of the RAPD marker. The hybrid nature of these selected progeny was verified with sugarcane microsatellite markers. This is the first report of the development of Saccharum hybrids with the cytoplasm of S. spontaneum for breeding purpose through a combination of conventional and molecular breeding approaches. Availability of these F1 hybrids could enhance the genetic diversity of Saccharum germplasm and has enabled sugarcane geneticists and breeders to explore the possible contribution of S. spontaneum cytoplasm in the development of new sugarcane cultivars.
Depression is the leading cause of disability worldwide(1). The microbiota-gut-brain axis may play a role in the aetiology of depression, and probiotics show promise for improving mood and depressive state(2). Further evidence is required to support mechanisms and in high-risk populations, such as those with sub-threshold depression (which may be 2-3 times more prevalent than diagnosed depression)(3). The aims were to assess the efficacy of a probiotic compared with placebo in reducing the severity of depressive symptoms in participants with subthreshold depression, and to investigate potential mechanistic markers of inflammatory, antioxidant status and stress response. A double-blind, randomised, placebo-controlled trial was conducted in participants meeting diagnosis of subthreshold depression (DSM-5); aged 18-65 years; ≥18.5 kg/m2 body mass index; not taking antidepressants, centrally acting medications, probiotics nor antibiotics for at least 6 weeks. The probiotic (4 × 109 AFU/CFU, 2.5 g freeze-dried powder containing Lactobacillus fermentum LF16 (DSM26956), L. rhamnosus LR06 (DSM21981), L. plantarum LP01 (LMG P-21021), Bifidobacterium longum BL04 (DSM 23233)) or placebo was taken daily for 3-months. Data was collected at 3 study visits (pre-, mid- (6 weeks), post-intervention). Self-reported questionnaires measured psychological symptoms (Beck Depression Inventory, BDI; Hospital Anxiety Depression Scale, HADS) and quality of life. Blood and salivary samples were collected for biomarkers including cortisol awakening response (CAR). General linear models examined within-group and between-group differences across all time points. Thirty-nine participants completed the study (n = 19 probiotic; n = 20 placebo) using intention-to-treat analysis. The probiotic group decreased in BDI score by −6.5 (95% CI −12.3; −0.7) and −7.6 (95% CI −13.4; −1.8) at 6 and 12 weeks, respectively. The HADS-A score decreased in the probiotic group by −2.8 (95% CI −5.2; −0.4) and −2.7 (95% CI −5.1; −0.3) at 6 and 12, respectively. The HADS-D score decreased in the probiotic group by −3.0 (95% CI −5.4; −0.7) and −2.5 (−4.9; −0.2) at 6 and 12 weeks of intervention, respectively. No between group differences were found. There were no changes in perceived stress or quality of life scores. The probiotic group had reduced hs-CRP levels (7286.2 ± 1205.8 ng/dL vs. 5976.4 ± 1408.3; P = 0.003) and increased total glutathione (14.2 ± 8.9 ng/dL vs. 9.3 ± 4.7; P = 0.049) compared to placebo, post intervention. Lower levels of CAR were found in the probiotic compared to placebo (−0.04 ± 0.17 μg/dL vs. 0.16 ± 0.25; P = 0.009). A significant reduction in depressive symptoms and anxiety was observed within the probiotic group only. These results were supported by improvements observed in biomarkers, suggesting probiotics may improve psychological wellbeing in adults experiencing sub-threshold depression, by potential pathways involved in central nervous system homeostasis and inflammation. Future analyses are required to understand changes within the intestinal microbiota and to clarify how their metabolites facilitate emotional processing.
Due to the environmental problems derived from the use of common surfactants as modifiers for clay mineral adsorbents to mitigate mycotoxin contamination of animal feeds, finding non-toxic modifiers to prepare safe and efficient adsorbents is necessary. The objective of the present study was, therefore, to modify acidified palygorskite with polyhexamethylene biguanide (PHMB) to obtain antibacterial polyhexamethylene biguanide/palygorskite (PHMB/Plg) composites for the removal of zearalenone, a common mycotoxin. The PHMB/Plg composites were characterized and analyzed by X-ray diffraction, Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and isothermal nitrogen adsorption analysis. The adsorption properties of the composites with respect to zearalenone and their antibacterial activity with respect to Escherichia coli and Staphylococcus aureus were studied. The results indicated that the hydrophobicity of palygorskite was enhanced after modification with PHMB, which could effectively improve the adsorption property of palygorskite toward the nonpolar zearalenone molecules. The adsorption capacity of PHMB/Plg increased with increasing amounts of polyhexamethylene biguanide and increasing pH. The adsorption data were described well by pseudo-second order kinetics and by the Langmuir adsorption model. The maximum adsorption capacity was 2777 μg/g. When the amount of PHMB added increased to 15 wt.%, the composites obtained exhibited good antibacterial performance, and the minimum inhibitory concentrations for Escherichia coli and Staphylococcus aureus were both at 2.5 mg/mL.
Brick-red deposits with palygorskite (Pal) as the main ingredient are widely distributed in nature, but these have not been deployed at a large scale in industry because of their inherent deep colors. In the present study, the brick-red Pal deposit was treated hydrothermally in various reaction media including water, a urea solution, and a thiourea solution. The effects of these processes on the structure, physicochemical features, and color of Pal were studied intensively to understand the structure and composition of the brick-red Pal deposit and to lay a theoretical foundation for the extension of its industrial application. The changes in structural features after hydrothermal treatment were studied by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, magic-angle spinning nuclear magnetic resonance, and Mössbauer spectroscopy techniques. The results indicated that the color of brick-red Pal did not change after hydrothermal treatment in water or in a urea solution, and the color changed to gray-white after treatment in the thiourea solution. The rod-like crystal morphology of Pal was retained throughout the experiments and no significant change in the main associated minerals, including feldspar, muscovite, and quartz, was observed after hydrothermal treatment. The dissolution of associated hematite (α-Fe2O3 and the reduction of Fe(III) species are the main reason for the change of Pal from brick-red to gray-white.
The poor environmental stability of natural anthocyanin hinders its usefulness in various functional applications. The objectives of the present study were to enhance the environmental stability of anthocyanin extracted from Lycium ruthenicum by mixing it with montmorillonite to form an organic/inorganic hybrid pigment, and then to synthesize allochroic biodegradable composite films by incorporating the hybrid pigment into sodium alginate and test them for potential applications in food testing and packaging. The results of X-ray diffraction, Fourier-transform infrared spectroscopy, and use of the Brunauer–Emmett–Teller method and zeta potential demonstrated that anthocyanin was both adsorbed on the surface and intercalated into the interlayer of montmorillonite via host–guest interaction, and the hybrid pigments obtained allowed good, reversible, acid/base behavior after exposure to HCl and NH3 atmospheres. The composite films containing hybrid pigments had good mechanical properties due to the uniform dispersion of the pigments in a sodium alginate substrate and the formation of hydrogen bonds between them. Interestingly, the composite films also exhibited reversible acidichromism. The as-prepared hybrid pigments in composite films could, therefore, serve simultaneously as a reinforced material and as a smart coloring agent for a polymer substrate.
Females outperform males on verbal memory tests across the lifespan. Females also exhibit greater Alzheimer’s disease (AD) pathology at preclinical stages and faster atrophy and memory decline during disease progression. Synaptic factors influence the accumulation of AD proteins and may underpin cognitive resilience against AD, though their role in sex-related cognitive and brain aging is unknown. We tested interactive effects of sex and genetic variation in SNAP-25, which encodes a presynaptic protein that is dysregulated in AD, on cognition and AD-related biomarkers in cognitively unimpaired older adults.
Participants and Methods:
Participants included a discovery cohort of 311 cognitively unimpaired older adults (age mean [range]=70 [44-100]; 56% female; education mean=17.3 years; 24% APOE-e4+), and an independent, demographically-comparable replication cohort of 82 cognitively unimpaired older adults. All participants completed neurological examination, informant interview (CDR=0), neuropsychological testing, and blood draw. Participants were genotyped for the SNAP-25 rs105132 (T→C) single-nucleotide polymorphism via Sequenom (discovery cohort) or Omni 2.5M (replication cohort). In vitro models show the C-allele is associated with increased SNAP-25 expression compared to T/T genotype. A subset of the discovery cohort completed structural MRI (n=237) and florbetapir Aβ-PET (n=97). Regression analyses across cohorts examined the interaction of sex and SNAP-25 genotype (T/T homozygotes [53% prevalence] vs. C-carriers [47% prevalence]) on cognitive z-scores (verbal memory, visual memory, executive function, language), adjusting for age, education, APOE-e4, and APOE-e4 x sex. Discovery cohort models also examined sex-dependent effects of SNAP-25 on temporal lobe volumes and Aβ-PET positivity.
Results:
SNAP-25 T/T vs. C-carriers did not differ on demographics or APOE-e4 status across cohorts or within sexes. Sex interacted with SNAP-25 to predict verbal memory (p=.024) and language (p=.008) in the discovery cohort, with similar verbal memory differences observed in the replication cohort. In sex-stratified analyses, C-carriers exhibited better verbal memory than T/T carriers among females (d range: 0.41 to 0.64, p range: .008 to .046), but not males (d range: 0.03 to 0.12, p range: .499 to .924). In SNAP-25-stratified analyses, female verbal memory advantages were larger among C-carriers (d range: 0.74 to 0.89, p range: <.001 to .034) than T/T (d range: 0.13 to 0.36, p range: .022 to .682). Sex also interacted with SNAP-25 to predict Aβ-PET positivity (p=.046) such that female C-carriers exhibited the lowest prevalence of Aβ-PET positivity (13%) compared to other groups (23% to 35%). C-carriers exhibited larger temporal lobe volumes across sex, yet this effect only reached statistical significance among females (females: d=0.41, p=.018; males: d=0.26, p=.179). In post-hoc analyses, larger temporal lobe volumes were selectively associated with better verbal memory in female C-carriers (β=0.36, p=.026; other groups: |βs|<0.10, ps>.538).
Conclusions:
Among clinically normal older adults, we demonstrate female-specific advantages of carrying the SNAP-25 rs105132 C-allele across cognitive, neural, and molecular markers of AD. The rs105132 C-allele putatively reflects higher endogenous levels of SNAP-25. Our findings suggest a female-specific pathway of cognitive and neural resistance, whereby higher genetically-driven expression of SNAP-25 may reduce likelihood of amyloid plaque formation and support verbal memory, possibly through fortification of temporal lobe structure.
Competition among the two-plasmon decay (TPD) of backscattered light of stimulated Raman scattering (SRS), filamentation of the electron-plasma wave (EPW) and forward side SRS is investigated by two-dimensional particle-in-cell simulations. Our previous work [K. Q. Pan et al., Nucl. Fusion 58, 096035 (2018)] showed that in a plasma with the density near 1/10 of the critical density, the backscattered light would excite the TPD, which results in suppression of the backward SRS. However, this work further shows that when the laser intensity is so high ($>{10}^{16}$ W/cm2) that the backward SRS cannot be totally suppressed, filamentation of the EPW and forward side SRS will be excited. Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage. Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW. This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.
There are many deviation sources in the assembly process of aircraft complex thin-walled structures. To get important factors that affect quality, it is crucial to diagnose the key deviation resources. The deviation transfer between deviation sources and assembly parts has the characteristics of small sample size, nonlinearity, and strong coupling, so it is difficult to diagnose the key deviation sources by constructing assembly dimension chains. Therefore, based on the deviation detection data, transfer entropy and complex network theory are introduced. Integrating the depth-first traversal algorithm with degree centrality theory, a key deviation diagnosis method for complex thin-walled structures is proposed based on weighted transfer entropy and complex networks. The application shows that key deviation sources that affect assembly quality can be accurately identified by the key deviation source diagnosis method based on complex networks and weighted transfer entropy.
Despite emerging evidence suggesting the efficacy of psilocybin in the treatment of mood disorders such as depression, the exact mechanisms by which psilocybin is able to elicit these antidepressant effects remains unknown.
Objectives
As the use of psilocybin as a treatment modality for depression has garnered increasing interest, this study aims to summarize the existing evidence of the mechanism of action with which psilocybin alleviates depressive symptoms, focusing specifically on the neurobiological effects of psilocybin in human subjects.
Methods
Four databases (Ovid MEDLINE, EMBASE, psychINFO, and Web of Science) were searched using a combination of MeSH terms and free text keywords in September 2021. The original search included both human and animal studies and must have included testing of the mechanism of action of psilocybin. Only antidepressant effects were considered, with no other mood disorders or psychiatric diagnoses included. Two independent researchers screened at every stage of the review, with a third researcher resolving any conflicts. Though a full systematic review outlining the current literature on the complete mechanisms of action of psilocybin on depression was conducted, this abstract will focus specifically on the nine papers that included human subjects, disregarding the five animal models. PROSPERO registration number: 282710.
Results
After removing duplicates, the search identified 2193 papers and forty-nine were selected for full text review. Out of nine papers outlining the mechanisms of action of psilocybin use in human subjects, three papers investigated psilocybin’s effect on serotonin or glutamate receptor activity, two found an increase in synaptogenesis in regions such as the medial frontal cortex and hippocampus. Four found variation in blood flow to the amygdala, two found altered blood flow to the prefrontal cortex, and one found a reduction in delta power during sleep. Four papers found changes in functional connectivity or neurotransmission, most commonly in the hippocampus or prefrontal cortex.
Conclusions
Overall, the exact mechanism of psilocybin’s potential antidepressant effect remains unclear. Multiple pathways may be involved, including alterations in serotonin and glutamate receptor activity, as well as shifts in amygdala activity, neurogenesis, and functional connectivity in various brain regions. The relative lack of studies, and the variety of neurobiological modalities and endpoints used challenged the consolidation of data into consensus findings. Further studies are needed to better characterize psilocybin’s mechanism of action and to better understand the clinical effects of the use of psilocybin in the treatment of depression.
Maintenance electroconvulsive therapy (mECT) is an option in the treatment of affective disorders which progress is not satisfactory. It is certainly neglected and underused during the clinical practice.
Objectives
To evaluate the efficacy of mECT in reducing recurrence and relapse in recurrent depression within a sample of three patients.
Methods
We followed up these patients among two years since they received the first set of electroconvulsive sessions. We applied the Beck Depression Inventory (BDI) in the succesives consultations for evaluating the progress.
Results
The three patients were diagnosed with Recurrent Depressive Disorder (RDD). One of them is a 60 year old man that received initially a cycle of 12 sessions; since then he received 10 maintenance sessions. Other one is a 70 year old woman that received initially a cycle of 10 sessions; since then she received 6 maintenance sessions. The last one is a 55 year old woman that received initially a cycle of 14 sessions; since then she received 20 maintenance sessions.
All of them showed a significant reduction in depressive symptoms evaluated through BDI and clinical examination. In the first case, we found a reduction in the BDI from the first consultation to the last that goes from 60 to 12 points; in the second case, from 58 to 8 points; and in the last case, from 55 to 10 points. The main sections that improved were emotional, physical and delusional.
As side-effects of the treatment, we found anterograde amnesia, lack of concentration and loss of focus at all of them.
Conclusions
We find mECT as a very useful treatment for resistant cases of affective disorders like RDD.
It should be considered as a real therapeutic option when the first option drugs have been proved without success.
Neuroticism has societal, mental and physical health relevance, with an etiology involving genetic predisposition, psychological influence, and their interaction.
Objectives
To understand whether the association between polygenic risk score for neuroticism (PRS-N) and neuroticism is moderated by affective well-being.
Methods
Data were derived from TwinssCan, a general population twin cohort (age range=15-35 years, 478 monozygotic twins). Self-report questionnaires were used to measure well-being and neuroticism. PRS-N was trained from the Genetics of Personality Consortium (GPC) and United Kingdom Biobank (UKB). Multilevel mixed-effects models were used to test baseline and changes in well-being and neuroticism.
Results
Baseline wellbeing and neuroticism were associated (β=-1.35, p<0.001). PRSs-N were associated with baseline neuroticism (lowest p-value: 0.008 in GPC, 0.01 in UKB). In interaction models (PRS x wellbeing), GPC PRS-N (β=0.38, p=0.04) and UKB PRS-N (β=0.81, p<0.001) had significant interactions.
PRSs-N were associated with changes in neuroticism (lowest p-value: 0.03 in GPC, 0.3 in UKB). Furthermore, changes in wellbeing and neuroticism were associated (β =-0.66, p<0.001). In interaction models (PRS x change in wellbeing), only UKB PRS-N had a significant interaction (β=0.80, p<0.001).
Conclusions
Interaction between polygenic risk, wellbeing and neuroticism, were observed regarding baselines measures and change over time. Depending on the analysis step, the direction of the effect changed.
The heterogeneity of schizophrenia (SCZ) regarding clinical features including symptomatology, disease course and their inter-relationships with underlying biological substrates remain incompletely understood.
Objectives
In a bid to reduce illness heterogeneity using biological substrates, our study aimed to employ brain neurostructural measures for subtyping SCZ patients, and evaluate each subtype’s relationship with clinical features such as illness duration, psychotic psychopathology, and deficit status.
Methods
We recruited 240 subjects (160 SCZ patients, 80 healthy controls) for this study. All participants underwent brain structural magnetic resonance imaging scans and clinical assessments using the Positive and Negative Syndrome Scale. Biological subtypes of SCZ were identified using “Heterogeneity through discriminative analysis” (HYDRA), a clustering technique which accounted for relevant covariates and the inter-group normalized percentage changes in brain volume were also calculated.
Results
We found two neuroanatomical subtypes (SG-1 and SG-2) which were found amongst our patients with SCZ. The subtype SG-1 was associated with enlargements in the third and lateral ventricles, volume increase in the basal ganglia (putamen, caudate, pallidum), longer illness duration, and deficit status. The subtype SG-2 was associated with reductions of cortical and subcortical structures (hippocampus, thalamus, basal ganglia).
Conclusions
These findings have clinical implications in the early intervention, response monitoring, and prognostication of SCZ. Future studies may adopt a multi-modal neuroimaging approach to enhance insights into the neurobiological composition of relevant subtypes.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
We investigate the diversity in the sizes and average surface densities of the neutral atomic hydrogen (H i) gas discs in $\sim$280 nearby galaxies detected by the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). We combine the uniformly observed, interferometric H i data from pilot observations of the Hydra cluster and NGC 4636 group fields with photometry measured from ultraviolet, optical, and near-infrared imaging surveys to investigate the interplay between stellar structure, star formation, and H i structural parameters. We quantify the H i structure by the size of the H i relative to the optical disc and the average H i surface density measured using effective and isodensity radii. For galaxies resolved by $>$$1.3$ beams, we find that galaxies with higher stellar masses and stellar surface densities tend to have less extended H i discs and lower H i surface densities: the isodensity H i structural parameters show a weak negative dependence on stellar mass and stellar mass surface density. These trends strengthen when we limit our sample to galaxies resolved by $>$2 beams. We find that galaxies with higher H i surface densities and more extended H i discs tend to be more star forming: the isodensity H i structural parameters have stronger correlations with star formation. Normalising the H i disc size by the optical effective radius (instead of the isophotal radius) produces positive correlations with stellar masses and stellar surface densities and removes the correlations with star formation. This is due to the effective and isodensity H i radii increasing with mass at similar rates while, in the optical, the effective radius increases slower than the isophotal radius. Our results are in qualitative agreement with previous studies and demonstrate that with WALLABY we can begin to bridge the gap between small galaxy samples with high spatial resolution H i data and large, statistical studies using spatially unresolved, single-dish data.
Exposure investigations are labor intensive and vulnerable to recall bias. We developed an algorithm to identify healthcare personnel (HCP) interactions from the electronic health record (EHR), and we evaluated its accuracy against conventional exposure investigations. The EHR algorithm identified every known transmission and used ranking to produce a manageable contact list.
This study aimed to compare the pre- and post-operative vestibular and equilibrium functions of patients with cholesteatoma-induced labyrinthine fistulas who underwent different management methods.
Methods
Data from 49 patients with cholesteatoma-induced labyrinthine fistulas who underwent one of three surgical procedures were retrospectively analysed. The three management options were fistula repair, obliteration and canal occlusion.
Results
Patients underwent fistula repair (n = 8), canal occlusion (n = 18) or obliteration procedures (n = 23). Patients in the fistula repair and canal occlusion groups suffered from post-operative vertigo and imbalance, which persisted for longer than in those in the obliteration group. Despite receiving different management strategies, all patients achieved complete recovery of equilibrium functions through persistent efforts in rehabilitation exercises.
Conclusion
Complete removal of the cholesteatoma matrix overlying the fistula is reliable for preventing iatrogenic hearing deterioration due to unremitting labyrinthitis. Thus, among the three fistula treatments, obliteration is the optimal method for preserving post-operative vestibular functions.
We present the highest resolution and sensitivity $\sim$$1.4\,$GHz continuum observations of the Eridanus supergroup obtained as a part of the Widefield Australian Square Kilometer Array Pathfinder (ASKAP) L-band Legacy All-sky Blind surveY (WALLABY) pre-pilot observations using the ASKAP. We detect 9461 sources at 1.37 GHz down to a flux density limit of $\sim$$0.1$ mJy at $6.1''\times 7.9''$ resolution with a median root mean square of 0.05 mJy beam$^{-1}$. We find that the flux scale is accurate to within 5 % (compared to NVSS at 1.4 GHz). We then determine the global properties of eight Eridanus supergroup members, which are detected in both radio continuum and neutral hydrogen (HI) emission, and find that the radio-derived star formation rates (SFRs) agree well with previous literature. Using our global and resolved radio continuum properties of the nearby Eridanus galaxies, we measure and extend the infrared-radio correlation (IRRC) to lower stellar masses and inferred SFRs than before. We find the resolved IRRC to be useful for: (1) discriminating between active galactic nuclei and star-forming galaxies; (2) identifying background radio sources; and (3) tracing the effects of group environment pre-processing in NGC 1385. We find evidence for tidal interactions and ram-pressure stripping in the HI, resolved spectral index and IRRC morphologies of NGC 1385. There appears to be a spatial coincidence (in projection) of double-lobed radio jets with the central HI hole of NGC 1367. The destruction of polycyclic aromatic hydrocarbons by merger-induced shocks may be driving the observed WISE W3 deficit observed in NGC 1359. Our results suggest that resolved radio continuum and IRRC studies are excellent tracers of the physical processes that drive galaxy evolution and will be possible on larger sample of sources with upcoming ASKAP radio continuum surveys.
In the present study, we investigated the influence of different mid-stage N compensation timings on agronomic and physiological traits associated with grain yield and quality in field experiments. Two japonica rice cultivars with a good tasting quality (Nangeng 9108 and Nangeng 5055) were examined under eight N compensation timings (N1–N6: one-time N compensation at 7-2 weeks before heading; N7: split N compensation at 5 and 3 weeks before heading; N8: split N compensation at 4 and 2 weeks before heading) and a control with no N compensation. The highest yield was obtained with N7, followed by N3. The yield advantage is mainly attributable to the improved population structure (higher productive tiller rate with a stable number of effective panicles), higher total number of spikelets per unit area (large panicles with more grains per panicle), larger leaf area index in the late period and higher photosynthetic production capacity (more dry matter accumulation and transportation in the middle and late periods). Delaying N compensation timing improved the processing and nutritional quality of rice, but decreased the quality of appearance and cooking/eating traits. Our results suggest that, from the perspective of achieving relative coordination between high yield and high quality of japonica rice, the optimal N compensation should be divided equally at 5 and 3 weeks before heading. However, if simplifying the number of operations and the pursuit of eating quality were considered, one-time N compensation should be conducted at 5 weeks before heading.
A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density.