We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ice breaking has become one of the main problems faced by ships and other equipment operating in an ice-covered water region. New methods are always being pursued and studied to improve ice-breaking capabilities and efficiencies. Based on the strong damage capability, a high-speed water jet impact is proposed to be used to break an ice plate in contact with water. A series of experiments of water jet impacting ice were performed in a transparent water tank, where the water jets at tens of metres per second were generated by a home-made device and circular ice plates of various thicknesses and scales were produced in a cold room. The entire evolution of the water jet and ice was recorded by two high-speed cameras from the top and front views simultaneously. The focus was the responses of the ice plate, such as crack development and breakup, under the high-speed water jet loads, which involved compressible pressure ${P_1}$ and incompressible pressure ${P_2}$. According to the main cause and crack development sequence, it was found that the damage of the ice could be roughly divided into five patterns. On this basis, the effects of water jet strength, ice thickness, ice plate size and boundary conditions were also investigated. Experiments validated the ice-breaking capability of the high-speed water jet, which could be a new auxiliary ice-breaking method in the future.
Early in the COVID-19 pandemic, the World Health Organization stressed the importance of daily clinical assessments of infected patients, yet current approaches frequently consider cross-sectional timepoints, cumulative summary measures, or time-to-event analyses. Statistical methods are available that make use of the rich information content of longitudinal assessments. We demonstrate the use of a multistate transition model to assess the dynamic nature of COVID-19-associated critical illness using daily evaluations of COVID-19 patients from 9 academic hospitals. We describe the accessibility and utility of methods that consider the clinical trajectory of critically ill COVID-19 patients.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
Background: Duchenne muscular dystrophy (DMD) is a severe progressive neuromuscular disease. This study aimed to estimate the prevalence, healthcare resource utilization (HRU), and medical costs of DMD in Alberta. Methods: This retrospective study linked provincial healthcare administrative data to identify patients with DMD utilizing a modified diagnostic code algorithm, including males <30 years of age. Five-year (April 2012 to March 2017) prevalence estimates were calculated and all-cause direct HRU and costs were examined in the first-year post-diagnosis. Results: Overall, 111 patients (median age: 12.0 years (IQR 4.7-18.3)) with DMD were identified. The estimated five-year period prevalence was 35.72 (95% CI 31.88-39.91) per 100,000 persons. All-cause HRU in the first-year post-diagnosis included a mean (SD) of 0.48 (1.19) hospitalizations (length of stay: 9.37 days (36.47)), 3.96 (6.16) general practitioner visits, 28.52 (62.98) specialist visits, and 20.14 (16.49) ambulatory care visits. Mean (SD) all-cause direct costs were $18,868 ($29,206) CAD in the first-year post-diagnosis. Conclusions: Patients with DMD had multiple interactions with the healthcare system in the year following diagnosis, resulting in substantial direct medical costs. More effective treatment strategies are needed to improve health outcomes and reduce the burden of DMD.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76–227 MHz of the entire southern sky (Declination
$<\!{+}30^{\circ}$
) with an angular resolution of
${\approx}2$
arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1 590 local (median
$z \approx 0.064$
) radio sources with
$S_{200\,\mathrm{MHz}} > 55$
mJy across an area of
${\approx}16\,700\,\mathrm{deg}^{2}$
. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73% are fuelled by an active galactic nucleus (AGN) and 27% by star formation. We present the local radio luminosity function for AGN and star-forming (SF) galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and
${\sim}1$
GHz. For the AGN, the median spectral index between 200 MHz and
${\sim}1$
GHz,
$\alpha_{\mathrm{high}}$
, is
$-0.600 \pm 0.010$
(where
$S \propto \nu^{\alpha}$
) and the median spectral index within the GLEAM band,
$\alpha_{\mathrm{low}}$
, is
$-0.704 \pm 0.011$
. For the SF galaxies, the median value of
$\alpha_{\mathrm{high}}$
is
$-0.650 \pm 0.010$
and the median value of
$\alpha_{\mathrm{low}}$
is
$-0.596 \pm 0.015$
. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4% of local radio AGN have ultra-steep radio spectra at low frequencies (
$\alpha_{\mathrm{low}} < -1.2$
). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
We conducted the first detailed mineral magnetic investigation of more than nine loess–paleosol couplets of the composite Titel-Stari Slankamen loess section in Serbia, which provides one of the longest and most complete terrestrial record of paleoclimatic changes in Europe since ~1.0 Ma. The results show that the ferrimagnetic mineral assemblage of the loess units is dominated by partially oxidized multidomain (MD) and pseudo-single domain (PSD) magnetite; however, with an increasing degree of pedogenesis, the eolian contribution is gradually masked by pedogenic superparamagnetic(SP) and single-domain (SD) ferrimagnets (mainly maghemite). The overall consistency of ferrimagnetic grain-size parameters indicates an absence of dissolution of the fine-grained ferrimagnetic fraction despite changes in climate regime over the past 1.0 Ma. The variations of normalized dJ/dT@120K and normalized χheating@530°C reflect a long-term stepwise increase in aridity during glacials with a major step at ~0.6–0.5 Ma, over the last 1.0 Ma. Overall, the results provide an improved basis for the future use of the magnetic properties of Serbian loess deposits for paleoclimatic reconstruction.
The aeolian loess-paleosol sequences in the Chinese Loess Plateau (CLP) are an excellent archive of variations in atmospheric circulation in the geological past. However, there is no consensus regarding the roles of the East Asian winter monsoon and westerly winds in transporting the dust responsible for loess deposition during glacial and interstadial periods. We conducted detailed measurements of the anisotropy of magnetic susceptibility (AMS) on two parallel loess profiles covering the most recent 130 ka in the western CLP to determine paleowind directions. Results show that the magnetic lineations of the loess and paleosol units in both sections are significantly clustered along the northwest to southeast direction. These observations demonstrate that the prevailing wind system responsible for dust transport in the western CLP was the northwesterly winter monsoon, rather than the westerly winds. The AMS-derived dust-bearing wind direction was relatively stable during the last glacial and interglacial cycle in the western CLP, consistent with sedimentary and AMS evidence from the eastern CLP. Accordingly, it is reasonable to conclude that large areas of deserts and Gobi deserts areas located in the upwind direction were the dominant sources for the aeolian deposits of the Loess Plateau.
To examine associations between geographic information systems (GIS)-assessed accessibility to small food stores, shopping patterns and dietary behaviours among small food store customers.
Design:
Residential addresses and customer shopping patterns (frequency of shopping, and previous purchase of fruits and vegetables) were gathered through customer intercept surveys. Addresses were geocoded, and GIS-assessed distance and driving time from the participants’ residence to the store were calculated. Dietary status and behaviours were assessed using an objective non-invasive measure of skin carotenoids, the National Cancer Institute Fruit and Vegetable Screener, and items to assess sugary beverage intake. Associations between distance and driving time, demographics, shopping frequency, prior reported purchase of fruits and vegetables at the store and dietary behaviours were examined.
Setting:
Small food stores (n 22) across North Carolina.
Participants:
Cross-sectional convenience samples of English-speaking customers aged 18 years or older (n 692).
Results:
Participants living closer to the small store had lower income and formal education, were more likely to be Black, more likely to have previously bought fruits and vegetables at the store and more frequently shopped at the store. In adjusted models, skin carotenoids (n 644) were positively associated with distance to the store from home in miles (P = 0·01).
Conclusions:
Customers who lived closer to the stores were more frequent shoppers and more likely to have previously purchased fruits and vegetables at the store yet had lower skin carotenoids. These results support continued efforts to examine how to increase the availability and promotion of healthful foods at small food retail stores.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
To evaluate the dynamic properties of a coupled structure based on the dynamic properties of its substructures, this paper investigates the dynamic substructuring issue from the perspective of response prediction. The main idea is that the connecting forces at the interface of substructures can be expressed by the unknown coupled structural responses, and the responses can be solved rather easily. Not only rigidly coupled structures but also resiliently coupled structures are investigated. In order to further comprehend and visualize the nature of coupling problems, the Neumann series expansion for a matrix describing the relation between the coupled and uncoupled substructures is also introduced in this paper. Compared with existing response prediction methods, the proposed method does not have to measure any forces, which makes it easier to apply than the others. Clearly, the frequency response function matrix of coupled structures can be derived directly based on the response prediction method. Compared with existing frequency response function synthesis methods, it is more straightforward and comprehensible. Through demonstration of two examples, it is concluded that the proposed method can deal with structural coupling problems very well.
Coronavirus disease (COVID-19) is a “disaster of uncertainty” with ambiguity about its nature and trajectory. These features amplify its psychological toxicity and increase the number of psychological casualties it inflicts. Uncertainty was fueled by lack of knowledge about the lethality of a disaster, its duration, and ambiguity in messaging from leaders and health care authorities. Human resilience can have a buffering effect on the psychological impact. Experts have advocated “flattening the curve” to slow the spread of the infection. Our strategy for crisis leadership is focused on flattening the rise in psychological casualties by increasing resilience among health care workers. This paper describes an approach employed at Johns Hopkins to promote and enhance crisis leadership. The approach is based on 4 factors: vision for the future, decisiveness, effective communication, and following a moral compass. We make specific actionable recommendations for implementing these factors that are being disseminated to frontline leaders and managers. The COVID-19 pandemic is destined to have a strong psychological impact that extends far beyond the end of quarantine. Following these guidelines has the potential to build resilience and thus reduce the number of psychological casualties and speed the return to normal – or at least the new normal in the post-COVID world.
Data on the prevalence of extrapulmonary tuberculosis (EPTB) patients are limited in many African countries including Malawi. We conducted a retrospective review of all histology reports for cancer suspected patients at Mzuzu Central Hospital (MZCH) between 2013 and 2018 to determine the proportion of EPTB cases among cancer suspected patients and characterised them epidemiologically. All reports with inconclusive findings were excluded. In total, 2214 reports were included in the review, 47 of which reported EPTB, representing 2.1% (95% CI 1.6−2.8). The incidence of EPTB was significantly associated with sex, age and HIV status. Men were more than twice (OR 2.1; 95% CI 1.2–3.9) as likely to have EPTB as women while those with HIV were more than six times (OR 6.4; 95% CI 1.7–24.8) as likely to have EPTB compared to those who were HIV-negative. EPTB demonstrated an inverse relationship with age. The highest proportion of EPTB was found from neck lymph nodes (10.3% (5.4–17.2)). A reasonable number of EPTB cases are diagnosed late or missed in Malawi's hospitals. There is a need for concerted efforts to increase EPTB awareness and likely come up with a policy to consider EPTB as a differential diagnosis in cancer suspected patients.
Residual deformation and failure are two critical issues in powder bed fusion (PBF) additive manufacturing (AM) of metal products. Residual deformation caused by the non-uniform residual stress distribution dramatically affects the quality of AM product and can result in catastrophic failure in operation. Therefore, the development of an effective numerical approach to predict residual deformation and failure characteristics of AM product is always a major concern in industrial applications.
In this paper, a numerical approach in predicting residual distortion, stress and failure in AM products is presented. The conventional inherent strain method used in welding process is modified to consider the specific characteristic of AM process, such as the influences of reheating and scanning pattern. This approach consists of three simulation steps including a detailed process simulation in small-scale, a onetime static mechanical finite element analysis in part-scale, and a material failure analysis. First, the inherent strains are calculated from a thermo-mechanical process simulation in small-scale, which considers AM process parameters, such as laser power, scanning speed and path. The physical state in deposited materials including powder, liquid and solid states are taken into account in the simulation by specifying the solidus and liquidus temperature and corresponding material properties. Then the inherent strains are applied layer by layer to the part-scale simulation, where the residual distortion and stress can be predicted efficiently. Finally, a Lagrange particle method is utilized to study the failure characteristics of AM products. Numerical examples are studied to investigate the effectiveness and applicability of present approach.
We investigate the impact on the boundary-layer stability of spanwise-periodic, streamwise-elongated surface roughness elements. Our interest is in their effects on the so-called lower-branch Tollmien–Schlichting modes, and so the spanwise spacing of the elements is taken to be comparable with the spanwise wavelength of the latter, which is of $O(R^{-3/8} L)$, where $L$ is the dimensional length from the leading edge of the flat plate to the surface roughness, and $R$ is the Reynolds number based on $L$. The streamwise length is much longer, consistent with experimental set-ups. The roughness height is chosen such that the wall shear is altered by $O(1)$. From the generic triple-deck theory for three-dimensional roughness elements with both the streamwise and spanwise length scales being of $O(R^{-3/8 }L)$, we derived the relevant governing equations by appropriate rescaling. The resulting equations are nonlinear but parabolic because the pressure gradient in the streamwise direction is negligible while in the spanwise direction it is completely determined by the roughness shape. Appropriate upstream, boundary and matching conditions are derived for the problem. Owing to the parabolicity, the equations are solved efficiently using a marching method to obtain the streaky flow. The instability of the streaky flow is shown to be controlled by the spanwise-dependent (periodic) wall shear. Two- and weakly three-dimensional lower-frequency modes are found to be stabilised by the streaks, confirming previous experimental findings, while stronger three-dimensional and higher-frequency modes are destabilised. Among the three roughness shapes considered, the roughness elements in the form of hemispherical caps are found to be most effective for a given height. A resonant subharmonic interaction was found to occur for modes with spanwise wavelength twice that of the roughness elements.
The Murchison Widefield Array (MWA) has observed the entire southern sky (Declination,
$\delta< 30^{\circ}$
) at low radio frequencies, over the range 72–231MHz. These observations constitute the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we use the extragalactic catalogue (EGC) (Galactic latitude,
$|b| >10^{\circ}$
) to define the GLEAM 4-Jy (G4Jy) Sample. This is a complete sample of the ‘brightest’ radio sources (
$S_{\textrm{151\,MHz}}>4\,\text{Jy}$
), the majority of which are active galactic nuclei with powerful radio jets. Crucially, low-frequency observations allow the selection of such sources in an orientation-independent way (i.e. minimising the bias caused by Doppler boosting, inherent in high-frequency surveys). We then use higher-resolution radio images, and information at other wavelengths, to morphologically classify the brightest components in GLEAM. We also conduct cross-checks against the literature and perform internal matching, in order to improve sample completeness (which is estimated to be
$>95.5$
%). This results in a catalogue of 1863 sources, making the G4Jy Sample over 10 times larger than that of the revised Third Cambridge Catalogue of Radio Sources (3CRR;
$S_{\textrm{178\,MHz}}>10.9\,\text{Jy}$
). Of these G4Jy sources, 78 are resolved by the MWA (Phase-I) synthesised beam (
$\sim2$
arcmin at 200MHz), and we label 67% of the sample as ‘single’, 26% as ‘double’, 4% as ‘triple’, and 3% as having ‘complex’ morphology at
$\sim1\,\text{GHz}$
(45 arcsec resolution). We characterise the spectral behaviour of these objects in the radio and find that the median spectral index is
$\alpha=-0.740 \pm 0.012$
between 151 and 843MHz, and
$\alpha=-0.786 \pm 0.006$
between 151MHz and 1400MHz (assuming a power-law description,
$S_{\nu} \propto \nu^{\alpha}$
), compared to
$\alpha=-0.829 \pm 0.006$
within the GLEAM band. Alongside this, our value-added catalogue provides mid-infrared source associations (subject to 6” resolution at 3.4
$\mu$
m) for the radio emission, as identified through visual inspection and thorough checks against the literature. As such, the G4Jy Sample can be used as a reliable training set for cross-identification via machine-learning algorithms. We also estimate the angular size of the sources, based on their associated components at
$\sim1\,\text{GHz}$
, and perform a flux density comparison for 67 G4Jy sources that overlap with 3CRR. Analysis of multi-wavelength data, and spectral curvature between 72MHz and 20GHz, will be presented in subsequent papers, and details for accessing all G4Jy overlays are provided at https://github.com/svw26/G4Jy.
To evaluate the effect of definitive radiotherapy dose on survival in patients with human papillomavirus positive oropharyngeal carcinoma.
Methods
Human papillomavirus positive oropharyngeal carcinoma patients staged T1–3 and N0–2c, who received definitive radiotherapy (fraction sizes of 180 cGy to less than 220 cGy), were identified from the National Cancer Database 2010–2014 and stratified by radiation dose (50 Gy to less than 66 Gy, or 66 Gy or more).
Results
A total of 2173 patients were included, of whom 124 (6 per cent) received a radiation dose of 50 Gy to less than 66 Gy. With a median follow up of 33.8 months, patients had a 3-year overall survival rate of 88.6 per cent (95 per cent confidence interval = 87.1–90.1 per cent). On multivariate Cox analysis, a radiotherapy dose of 50 Gy to less than 66 Gy (hazard ratio = 0.95, 95 per cent confidence interval = 0.52–1.74, p = 0.86) was not a predictor of increased mortality risk.
Conclusion
Human papillomavirus positive oropharyngeal carcinoma patients had excellent outcomes with definitive radiotherapy doses of 50 Gy to less than 66 Gy. These results further support patients enrolling into clinical trials for radiation dose de-escalation.
The entire southern sky (Declination,
$\delta< 30^{\circ}$
) has been observed using the Murchison Widefield Array (MWA), which provides radio imaging of
$\sim$
2 arcmin resolution at low frequencies (72–231 MHz). This is the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we have previously used a combination of visual inspection, cross-checks against the literature, and internal matching to identify the ‘brightest’ radio-sources (
$S_{\mathrm{151\,MHz}}>4$
Jy) in the extragalactic catalogue (Galactic latitude,
$|b| >10^{\circ}$
). We refer to these 1 863 sources as the GLEAM 4-Jy (G4Jy) Sample, and use radio images (of
${\leq}45$
arcsec resolution), and multi-wavelength information, to assess their morphology and identify the galaxy that is hosting the radio emission (where appropriate). Details of how to access all of the overlays used for this work are available at https://github.com/svw26/G4Jy. Alongside this we conduct further checks against the literature, which we document here for individual sources. Whilst the vast majority of the G4Jy Sample are active galactic nuclei with powerful radio-jets, we highlight that it also contains a nebula, two nearby, star-forming galaxies, a cluster relic, and a cluster halo. There are also three extended sources for which we are unable to infer the mechanism that gives rise to the low-frequency emission. In the G4Jy catalogue we provide mid-infrared identifications for 86% of the sources, and flag the remainder as: having an uncertain identification (129 sources), having a faint/uncharacterised mid-infrared host (126 sources), or it being inappropriate to specify a host (2 sources). For the subset of 129 sources, there is ambiguity concerning candidate host-galaxies, and this includes four sources (B0424–728, B0703–451, 3C 198, and 3C 403.1) where we question the existing identification.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
Previous studies have shown that African American youth are over-represented in the Criminal Justice System (CJS). Substance use problems are common among those with CJS involvement. However, less is known regarding racial disparities, among youth with CJS involvement, in receiving substance use treatment services.
Objective
To examine racial disparities with regard to receiving treatment services for substance use related problems, among youth with (CJS) involvement.
Methods
Data were obtained from the 2006–2008 United States National Survey on Drug Use and Health (NSDUH) in USA. Among White and African American adolescents (Ages 12–17) with recent CJS involvement and who met criteria for alcohol or illicit drug abuse or dependence (N = 602), racial differences in receiving treatment services for substance use problems were examined. Multiple logistic regression analyses were performed to identify predictors of service access among the adolescents, to see if the racial disparity could be explained by individual-level, family-level, and criminal justice system involvement factors.
Results
While 31.2% of White adolescent substance abusers with CJS involvement had received treatment for substance use related problems, only 11.6% of their African American counterparts had received such treatment (P = 0.0005). Multiple logistic regression analyses showed that access to treatment services can be predicted by substance use related delinquent behaviors, but that racial disparities in treatment still exist after adjusting for these factors (AOR = 0.24, 95%CI = (0.09,0.59), P = 0.0027).
Conclusions
There is an urgent need to reduce racial disparities in receiving substance use treatment among U.S. youth with CJS involvement.