We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This research communication aimed to probe the genetic polymorphisms of alpha, beta, and kappa caseins in Gangatiri cows (an indigenous Indian cattle). Detection of variants has received considerable research interest in the dairy industry and animal breeding in recent years as a source of good quality protein, but also of bioactive peptides that may be linked to health implications. The polymorphic nature of casein fractions and their association with milk production traits, composition, and quality also attracted several efforts in evaluating the allelic distribution of different casein locus as a potential dairy trait marker. Molecular techniques of polyacrylamide gel electrophoresis and high-resolution accurate mass-spectrometry have been applied to this probe. Sequence analysis of different casein types in the cows showed the presence of four specific variants.
This study was undertaken to assess the health status of newborns discharged from Sick Newborn Care Units (SNCU) of the Cyclone Fani affected districts of Odisha, which is amongst the highest neonatal mortality rate states in the country.
Methods:
Cyclone Fani hit the coast of Odisha on May 3, 2019. This cross-sectional study was conducted in 5 districts and targeted the babies discharged from SNCU’s from January to May 2019. A telephonic interview of the caregivers was conducted to assess the health status of the newborns. Data was collected in a web-based portal and analyzed by statistical package for social sciences SPSS (IBM Corp., Armonk, New York, USA).
Results:
We inquired about 1840 babies during the study period but only 875 babies could be followed up, with the highest proportion of the babies from the most affected district. Out of 875 babies, 111 (12.7%) had 1 or more illnesses during follow up. Distance from the health facility and time constraints were the major reasons for not seeking health care. Of the babies, 35.7% were reported as being underweight. Poor breastfeeding (14.1%) and kangaroo mother care (31.7%) practices were reported. Only 32% of the babies were completely immunized.
Conclusion:
The health status of the babies discharged from the SNCUs was found to be poor. Newborn care can be strengthened by improving home-based and facility-based newborn care.
Bedload particle hops are defined as successive motions of a particle from start to stop, characterizing one of the most fundamental processes of bedload sediment transport in rivers. Although two transport regimes have been recently identified for short and long hops, respectively, there is still the lack of a theory explaining the mean hop distance–travel time scaling for particles performing short hops, which dominate the transport and may cover over 80 % of the total hop events. In this paper, we propose a velocity-variation-based formulation, the governing equation of which is intrinsically identical to that of Taylor dispersion for solute transport within shear flows. The key parameter, namely the diffusion coefficient, can be determined by hop distances and travel times, which are easier to measure and more accurate than particle accelerations. For the first time, we obtain an analytical solution for the mean hop distance–travel time relation valid for the entire range of travel times, which agrees well with the measured data. Regarding travel times, we identify three distinct regimes in terms of different scaling exponents: respectively, $\sim$1.5 for the initial regime and $\sim$5/3 for the transition regime, which define the short hops, and 1 for the Taylor dispersion regime defining long hops. The corresponding distribution of the hop distance is analytically obtained and experimentally verified. We also show that the conventionally used exponential distribution, as proposed by Einstein, is solely for long hops. Further validation of the present formulation is provided by comparing the simulated accelerations with measurements.
Cordia sinensis, locally known as ‘Goondi’ in India, is an underexploited multipurpose fruit species found in hot arid regions that is well adapted to drought, salt and hot conditions. The present study was undertaken to collect fruit samples from different locations in the Kachchh region of Gujarat, India, and to determine their field establishment for characterization, conservation and utilization. The maximum distribution of the species was observed in Bhuj (45%) and Mandvi (25%). Field boundaries (35%) and scrub forests (30%) had greater frequencies, whereas backyards had rarer frequencies (10%). The species most commonly occurred on levelled topography (60%) with a soil pH in the range of 8–8.5 (63%). Morphological data of three-year-old plants in the field gene bank showed a maximum coefficient of variation in the number of leaves per plant (66.6), followed by the number of branches per plant (45.62) and collar diameter (27.69). Wide variations were recorded in plant height (121.67–212 cm), spread (118–223 cm2) and the number of branches per plant (6–24.33). Specific accessions were identified for fodder (CBCG-12, CBCG-13 and CBCG-16), early flowering and fruiting (CBCG-12, CBCG-13 and CBCG-14), easier propagation by seeds (CBCG-12 and CBCG-13) and salt tolerance (CBCG-15 and CBCG-16). Preliminary findings and information provided about this species' utilization and other aspects might be useful for future research on its domestication, sole plantation and conservation aspects, improving the exploitation of this species by present and future generations.
The Vindhyan Supergroup represents the largest Proterozoic sedimentary basin fill in the Indian shield. In addition to some significant palaeobiological discoveries, the sedimentary sequence of the Vindhyan, particularly its argillaceous intervals, holds crucial information for our understanding of sedimentation dynamics in Proterozoic clastic shelves. Here we attempt an extensive, although not exhaustive, review of the physical characteristics of six argillaceous (shale) intervals (Arangi, Koldaha, Rampur, Bijaygarh, Rewa and Sirbu shale) from the Son valley sector, Vindhyan Basin, augmented with new observations to unravel the status of current understanding in terms of palaeo-flow dynamics, shelf sedimentation processes and dispersal pattern, depositional cyclicity and basinal tectonics. The sedimentary attributes of Vindhyan shales reveal their deposition largely in relative bathymetry fluctuating from distal shoreface or inner shelf (near to fair-weather wave base) to distal shelf below storm wave base. More often than not, the Vindhyan shelf was storm-infested and the operation of both storm-generated return flow and Coriolis-force-guided geostrophic currents are documented from different stratigraphic intervals of argillaceous successions. The thick arenaceous intervals interrupting the deposits of the Koldaha, Rewa and Sirbu shales at multiple stratigraphic levels indicate the presence of a fan delta and braided fluvial system during intermittent regressive stands of sea level or event deposition during a sea-level highstand, respectively. Based on facies pattern and flow vectors, a rift-related half-graben model is inferred for Arangi and Koldaha shale and a low-gradient stable-shelf model with well-defined energy gradient is proposed for successions from Rampur shale onwards.
To analyse the presentation, diagnosis and patterns of care of extraosseous Ewing sarcoma treated at our institution between 2008 and 2018.
Methods:
Electronic medical records of extraosseous Ewing sarcoma patients treated at our institution between January 2008 and April 2018 were reviewed. Kaplan–Meier curves were plotted to assess the overall and disease-free survival with 95% confidence intervals. A univariate analysis was carried out to assess the impact of variables such as surgical excision, completeness of surgery, completeness of chemotherapy and addition of radiation therapy on the survivorship.
Results:
The records of 65 patients treated at our institution were available for review. The mean age was 26·4 years. The most frequent sites of extraosseous Ewing tumour were kidney—9/65 (13·8%) and brain—10/65 (15·4%). Sixteen (24·6%) patients presented with inoperable/metastatic disease at diagnosis. The other 49 (75·4%) had localised disease at presentation. The median overall survival of the 49 non-metastatic patients was 46 months, and the disease-free survival was 45 months.
Conclusion:
Extraosseous Ewing sarcoma is a rare and aggressive tumour diagnosed by molecular techniques. Multi-modality treatment including surgical resection with wide margins, adjuvant radiation when indicated and completion of systemic chemotherapy results in optimum outcomes.
To analyse the presentation, treatment strategies and outcomes of neuroendocrine carcinoma of cervix treated with multi-modality approach at our institute.
Materials and methods:
The data of patients diagnosed to have cervical cancer between October 2004 and November 2018 were retrieved, and 14 patients of neuroendocrine carcinoma cervix who received treatment in our institution were identified. The patients were analysed based on demographic characteristics, disease stage, pathological characteristics, treatment and follow-up. The median overall survival and disease-free survival were calculated.
Results:
Median follow-up period was 8 months (range 1–52 months). Six patients died within 4 months of completion of treatment due to disease progression. Median overall survival was 12 months and median disease-free interval was 5·5 months. Four of the patients who underwent combined modality treatment consisting of neoadjuvant chemotherapy, concurrent chemoradiation therapy and brachytherapy are still on regular follow-up and are disease-free.
Conclusion:
Neuroendocrine carcinoma of the cervix is a rare but aggressive histological subtype. Combined modality approach with judicious use of systemic chemotherapy along with surgery and radiation therapy is essential for optimal outcomes.
Second-harmonic generation of the relativistic self-focused chirped laser pulse in plasma has been studied with the exponential plasma density ramp profile in the presence of a planar magnetostatic wiggler. It is evident that the exponential plasma density ramp is helpful in enhancing second-harmonic generation as, with the introduction of the exponential plasma density ramp, self-focusing becomes stronger and hence, it leads to enhance the harmonic generation of the second order in the plasma. Also, it is observed that the efficiency of second-harmonic generation enhances significantly with an increase in the value of the chirp parameter. Further, the magnetostatic wiggler helps in enhancing the harmonic generation of the second order. This is due to the fact that dynamics of the oscillating electrons is altered due to the Lorentz force which, in turn, modifies the plasma wave and, hence, results in the efficient second-harmonic generation.
In this paper, the scheme of generation of second harmonics of incident electromagnetic wave having a Hermite–Gaussian intensity profile in an under dense relativistic plasma has been presented. The relativistic mass variation of electrons by the intense electric field of incident beam generates the density gradients in background plasma which further excites the electron plasma wave (EPW) at resonant frequency and coupling of the EPW with the incident beam results in the generation of second harmonics of incident beam. Propagation dynamics of the Hermite–Gaussian laser beam in plasma has been studied by the formulation of differential equation for the spot size of the laser beam with the help of method of moments. Numerical simulations have been carried out to solve the differential equation for the dimensionless beam width parameters. Solution of the nonlinear wave equation for the electric field vector of second harmonics of incident beam gives the expression for second-harmonic yield. It has been observed that second-harmonic yield is affected by the different modes of Hermite–Gaussian laser beam in relativistic plasma.
The distribution of temporal scale-dependent streamwise velocity increments is investigated in turbulent boundary layer flows at laboratory and atmospheric Reynolds numbers, using the St. Anthony Falls Laboratory wind tunnel and the Surface Layer Turbulence and Environmental Science Test dataset, respectively. The third-order moments of velocity increments, or asymmetry index $A(a,z)$, is computed for varying wall distance $z$ and time scale separation $a$, where it was observed to leave a robust, distinct signature in the form of a hump, independent of Reynolds number and located across the inertial range. The hump is observed in wall region limited to $z^{+}<5\times 10^{3}$, with a tendency to shift towards smaller time scales as the surface is approached ($z^{+}<70$). Comparing the two datasets, the hump, and its location, are found to obey inner wall scaling and is regarded as a genuine feature of the canonical turbulent boundary layer. The magnitude cumulant analysis of the scale-dependent velocity increments further reveals that intermittency is also enhanced near the wall, in the same flow region where the asymmetry signature was observed. The combination of asymmetry and intermittency is inferred to point at non-local energy transfer and scale coupling across a range of scales. From a turbulent structure perspective, such non-local energy transfer can be seen as the result of strong scale-interaction processes between outer scale motions in the logarithmic layer impacting and distorting smaller scales at the wall, through abrupt energy transfer across scales bypassing the typical energy cascade of the inertial range.
This paper presents a scheme for excitation of an electron-plasma wave (EPW) by beating two q-Gaussian laser beams in an underdense plasma where ponderomotive nonlinearity is operative. Starting from nonlinear Schrödinger-type wave equation in Wentzel–Kramers–Brillouin (WKB) approximation, the coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived. The ponderomotive nonlinearity depends not only on the intensity of first laser beam, but also on that of second laser beam. Therefore, the dynamics of one laser beam affects that of other and hence, cross-focusing of the two laser beams takes place. Due to nonuniform intensity distribution along the wavefronts of the laser beams, the background electron concentration is modified. The amplitude of EPW, which depends on the background electron concentration, is thus nonlinearly coupled with the laser beams. The effects of ponderomotive nonlinearity and cross-focusing of the laser beams on excitation of EPW have been incorporated. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on cross-focusing of the two laser beams and further its effect on EPW excitation.
We present a rare late manifestation of systemic venous collaterals in a 17-year-old female, 16 years after bidirectional cavopulmonary anastomosis, resulting in clinically unacceptable desaturation with progressive effort intolerance and cyanosis.
This paper presents theoretical investigation of effect of relativistic self-focusing of cosh-Gaussian (ChG) laser beam on second-harmonic generation in an underdense plasma. Steep transverse density gradients are produced in the plasma by the electron plasma wave excited by relativistic self-focusing of ChG laser beam. The generated plasma wave interacts with the pump beam to produce its second harmonics. Following Jeffrey Wentzel Kramers Brillouin (J.W.K.B) approximation and moment theory the differential equation governing the evolution of spot size of laser beam with distance of propagation has been derived. The differential equation so obtained has been solved numerically by the Runge–Kutta method to investigate the effect of decentered parameter, intensity of laser beam as well as density of plasma on self-focusing of the ChG laser beam, and generation of its second harmonics. It has been observed that the peak intensity of the laser beam shifts in the transverse direction by changing the decentered parameter and a noticeable change is observed on focusing of the laser beam as well as on conversion efficiency of second harmonics.
This paper presents a scheme for beat wave excitation of an electron plasma wave (EPW) by cross-focusing of two intense cosh-Gaussian (ChG) laser beams in an under dense collisional plasma. The plasma wave is generated on account of beating of two ChG laser beams of frequencies ω1 and ω2. Starting from Maxwell's equations, coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived by using Moment theory approach in Wentzel–Kramers–Brillouin approximation. The collisional nonlinearity depends not only on the intensity of first laser beam, but also on that of second laser beam. Therefore, dynamics of first laser beam affects that of other and hence cross-focusing of the two laser beams takes place. Numerical simulations have been carried out to investigate the effect of laser as well as plasma parameters on cross-focusing of laser beams and further its effect on power of excited EPW. It has been found that decentered parameters of the two laser beams have significant effect on power of EPW.
This paper presents an investigation of self-focusing of a q-Gaussian laser beam and its effect on harmonic generation in a preformed collisionless parabolic plasma channel. In the presence of a q-Gaussian laser beam, the carriers get redistributed from high field region to low field region on account of ponderomotive force as a result of which a transverse density gradient is produced in the channel which in turn generates plasma wave at pump frequency. Generated plasma wave interacts with the incident laser beam and generate higher harmonics of the incident laser beam. Moment theory has been used to derive differential equation for the spot size of laser beam propagating through the channel. The differential equation so obtained has been solved numerically. The effect of the intensity of laser beam, deviation of intensity distribution of laser beam along its wave front from Gaussian distribution, plasma density and depth of channel on beam width of laser beam and harmonic yield has been investigated. The effect of order of higher harmonic on harmonic yield has been also investigated.
This paper describes the establishment of a test setup for measurement of passive inter-modulation (PIM) products generated by various device(s) under test (DUT(s)) (filters, coaxial cables etc.) at ultra high frequency (UHF) band. The paper begins with a brief discussion of an ideal PIM test setup using a quiet load. It then discusses the establishment of the setup in the absence of quiet load and demonstrates a PIM level of −192 dBc of the test setup. Finally it shows the PIM performance of a band-stop filter, a flexible cable, cascade of band-stop filter, and flexible cable, measured using the established test setup. These components are required for UHF payload of a communication satellite.
Nature and mechanism of interfacial reactions between boron nitride nanotubes (BNNTs) and aluminum matrix at high temperature (650 °C) are studied using high-resolution transmission electron microscopy (HRTEM). This study analyzes the feasibility of the use of BNNTs as reinforcement in aluminum matrix composites for structural application, for which interface plays a critical role. Thermodynamic comparison of aluminum (Al)-BNNT with analogous Al-carbon nanotube (Al-CNT) system reveals lesser amount of reaction in the former. Experimental observation also reveals thin (∼7 nm) reaction-product formation at Al-BNNT interface even after 120 min of exposure at 650 °C. The spatial distribution of the reaction-product species at the interface is governed by the competitive diffusion of N, Al, and B. Morphology of the reaction products are influenced by their orientation relationship with BNNT walls. A theoretical prediction on Al-BNNT interface in macroscale composite suggests the formation of strong bond between the matrix and reinforcement phase.
Laser guiding through an axially non-uniform collisional magnetoplasma channel formed by ionizing laser prepulse has been investigated. Self-defocusing of the ionizing prepulse leads to an axial non-uniform plasma channel. Due to the propagation of second laser beam through such preformed plasma channel, non-uniform heating of electrons takes place on account of non-uniform intensity distribution of laser beam. Non-uniform heating diffuses the electrons away from the axis and thereby enhances the plasma channel. Due to the competition between diffraction and refraction phenomenon through such an axial non-uniform collisional magnetoplasma channel, there is a periodic beam width variation with the distance of propagation. Second order ordinary differential equations for the beam width parameter of prepulse and the guided beam have been set up using the moment theory approach. Effect of axial non-uniformity, intensity of guided beam and magnetic field has been seen on the propagation of the second guided beam in the plasma channel.
The opening essay in this special issue by Daud Ali surveys the historiography of the medieval and touches on some of the key problems of interpretation and periodisation in Indian history. However, Ali's paper does not address the Paramāras of central India and their part in building a strong kingdom in the heart of the country for several centuries. Because an introduction to the dynasty's history is essential for situating the articles that follow, this paper will survey the leading role played by the Paramāras in the history of India over the four hundred years of their political existence. This paper also provides an opportunity to contextualise the three Royal Asiatic Society copper-plates of the Paramāra dynasty now kept in the British Museum; they are illustrated in the pages that follow (Figs 1–3).