We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The prevalence of mental health conditions and national suicide rates are increasing in many countries. Lithium is widely and effectively used in pharmacological doses for the treatment and prevention of manic/depressive episodes, stabilising mood and reducing the risk of suicide. Since the 1990s, several ecological studies have tested the hypothesis that trace doses of naturally occurring lithium in drinking water may have a protective effect against suicide in the general population.
Aims
To synthesise the global evidence on the association between lithium levels in drinking water and suicide mortality rates.
Method
The MEDLINE, Embase, Web of Science and PsycINFO databases were searched to identify eligible ecological studies published between 1 January 1946 and 10 September 2018. Standardised regression coefficients for total (i.e. both genders combined), male and female suicide mortality rates were extracted and pooled using random-effects meta-analysis. The study was registered with PROSPERO (CRD42016041375).
Results
The literature search identified 415 articles; of these, 15 ecological studies were included in the synthesis. The random-effects meta-analysis showed a consistent protective (or inverse) association between lithium levels/concentration in publicly available drinking water and total (pooled β = −0.27, 95% CI −0.47 to −0.08; P = 0.006, I2 = 83.3%), male (pooled β = −0.26, 95% CI −0.56 to 0.03; P = 0.08, I2 = 91.9%) and female (pooled β = −0.13, 95% CI −0.24 to −0.02; P = 0.03, I2 = 28.5%) suicide mortality rates. A similar protective association was observed in the six studies included in the narrative synthesis, and subgroup meta-analyses based on the higher/lower suicide mortality rates and lithium levels/concentration.
Conclusions
This synthesis of ecological studies, which are subject to the ecological fallacy/bias, supports the hypothesis that there is a protective (or inverse) association between lithium intakes from public drinking water and suicide mortality at the population level. Naturally occurring lithium in drinking water may have the potential to reduce the risk of suicide and may possibly help in mood stabilisation, particularly in populations with relatively high suicide rates and geographical areas with a greater range of lithium concentration in the drinking water. All the available evidence suggests that randomised community trials of lithium supplementation of the water supply might be a means of testing the hypothesis, particularly in communities (or settings) with demonstrated high prevalence of mental health conditions, violent criminal behaviour, chronic substance misuse and risk of suicide.
Head injury is a major cause of morbidity and mortality in all age groups. Injury to the head can result in traumatic brain injury (TBI) of varying severity. TBI is common, with a self-reported lifetime prevalence of up to 40% in adults.1 Currently, there is no effective treatment to reverse the effects of the primary brain injury sustained, and treatment is aimed at minimising the secondary brain injury that can occur due to the effects of ischaemia, hypoxia and raised intracranial pressure. This can occur immediately, within the following hours or days, or after a further head injury. An understanding of the epidemiology of head injury is essential for devising preventive measures, to plan population-based primary prevention strategies and to provide effective and timely treatment, including provision of rehabilitation facilities to those who have suffered a head injury. This information can then be used to improve TBI outcomes.
Lithium can be found naturally in drinking water. In clinical practice, it
is widely used in pharmacological doses for the treatment of bipolar
disorder; and may also prevent suicidal behaviour in people with mood
disorders. In two studies, lithium levels in tap water have been
significantly and negatively correlated with suicide. We measured lithium
levels in tap water in the 47 subdivisions of the East of England and
correlated these with the respective suicide standardised mortality ratio in
each subdivision. We found no association between lithium in drinking water
and suicide rates across the East of England from 2006 to 2008.